
Qucs

A Tutorial

DC Analysis, Parameter Sweep and Device Models

Stefan Jahn
Chris Pitcher

Copyright c© 2005 Stefan Jahn <stefan@lkcc.org>
Copyright c© 2005 Chris Pitcher <ozjp@chariot.net.au>

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation. A copy of the license is included in the section entitled ”GNU
Free Documentation License”.

DC Static Circuits

A favourite question in electronics courses used to be:

You have twelve one ohm resistors; you connect them together so that each
resistor lies along the edge of a cube. What is the resistance between opposite
corners of the cube?

The intention may have been to teach soldering, as more than one student solved it by
making just such a cube! These days we can do that without touching the soldering iron;
we simulate the circuit.

Here is my attempt to make a cube in Qucs; anyone is welcome to try and improve it.

Figure 1: resistor cube schematic

All I did was select resistance in the left hand component window and paste them down,
rotating as necessary, until I had twelve on the schematic. Then I wired two sets of four
into squares, then connected the remaining four between the corners of the squares. Which
I’m sure is topologically the same as a cube.

1

Which all might seem trivial, but is a good reminder right at the beginning that we are
creating a virtual representation of a physical circuit. Sometimes we have to bend and
squeeze things to get it into a format that our simulator will accept, which leaves us
wondering whether we are working with an accurate representation.

The Rule is: if we can correlate the junctions of our components with those of the real
circuit, we are accurately representing the physical circuit. And, I might add, it is ALWAYS
worth checking that we have done it right; simulate the wrong circuit and it will tell you
lies.

With my cube of resistors accurately drawn, I only have to hit the simulation button and
the tabulated results will show me the voltage at the corner node. As I am forcing a
constant current through the cube from one corner to another, Ohm’s Law tells me that
the voltage between those corners will give me the resistance. If I use a current of one amp,
the output voltage will be equal to the resistance in ohms.1

Those with good attention to detail will be complaining about now that I haven’t really
solved the problem, as the question mentioned one ohm resistors while I have used fifty
ohms. Well, yes, I cheated. Which I often do in simulations.

To set all the resistances to the correct value I would have had to open the Properties
Editor window twelve times; here is how it looks...

Figure 2: component property dialog

1I could tell you the value my simulation gave, but why should I spoil your fun.... go ahead and run it
yourself. If you really want to be thorough you could then also build the circuit and measure the result.....

2

and the highlighted value is inviting me to type in an alternative. I could have done this,
but natural laziness got the better of me. I reasoned that fifty ohms is fifty times too high,
but if I reduced the current source from one amp to twenty milliamps, the output voltage
would be the same. You will find such laziness (or acute perception, depending on is telling
the story!) can save much time and effort.

When Things Vary

All of which is interesting, but not nearly as interesting as when we start changing things
like the supply voltage and see the effects. For linear devices with a DC supply, the answer
would be: not much. It’s when we introduce non-linear elements that things start to
happen.

The simplest non-linear element is the diode, and the question we ask most often about
a diode is: how does the diode forward voltage vary with current? So back to Qucs and
draw this circuit...

3

This circuit looks deceptively simple, but it introduces a few more features of Qucs, so let’s
go through them in order.

The components were again selected from the left hand window and wired together. Then
the two boxes were selected from the simulations window.

The DC simulation box can be pretty much left as is for now, but take note of the name
of the simulation: DC1.

The Parameter sweep box properties dialog looks like this when opened...

The first two items to take note of are the Simulation entry (here DC1, corresponding to
the name of the simulation box) and the Sweep Parameter entry, here entered as Id1.
If you look at the current source driving our diode you will see that it just happens to be
labeled Idrive. So the result of all this is that the component property value Id1 of the
current source’s property I will be swept through a range of values as determined by our
parameter sweep function named SW1.2

The rest of the entries set the type of sweep (here logarithmic) and the range of values over
which to sweep. You can try different values in any of these to see the effect; one of the
advantages of a simulator over a physical prototype is that you can’t blow up your diode
by feeding too much current through it!

So I hit the simulation button and it passed me over the results page, and I created a

2You can change this name if you wish, in the Properties menu of the Edit properties window.

4

couple of graphs of the output. This is how my screen looked...

In each case I have a plot of diode forward voltage (Y-axis) against forward current (X-
axis). The left hand graph has a logarithmic scale for forward current, while the right hand
graph uses a linear current scale. How did I do that? Well, you should know by now that
all things are easy with Qucs!

When you select a graph type from the left hand window and drag it into the viewing area,
it creates a graph and opens a dialog which looks like this

5

The left hand window shows the available variables and whether they are dependent or
independent. Here the current Id1 is the independent variable, and the forward voltage
Vdf.V is the dependent. Double-click on the entry for Vdf.V and it is transferred to the
right hand side; hit OK and the graph will be drawn.

That should give you something like the right hand graph in my screenshot above. Do it
all again, but this time before clicking OK open the Properties window, which looks like
this.

6

Here I’ve selected a logarithmic X Axis, which gave me the graph on the left hand side.
I’ve also moved them around and re-sized them to pretty them up; you can do all kinds of
fancy things if you want.

Now I’ve sneaked in another test to see if you are really following this. Those of you who
did run this simulation are probably wondering about now why your graphs look rather
different to mine. In particular, at high currents on the logarithmic scale your curve is a
straight line, while mine curves upwards alarmingly. What is happening ?

What I did was open the Properties dialog for the diode and set some parameters. This is
what the dialog box looks like...

7

and each of these entries sets one parameter of the virtual component we are using to
model the diode.

So, what are these parameters? Time to explore one of the delights of computer circuit
simulation, device modeling...

Models and Parameters

When the computer creates that small piece of virtual reality which represents your physical
circuit, it uses sets of equations which describe the operation of each device you insert. The
equation which relates the diode DC forward voltage as a function of current is

Id = Is ·
(

e
Vd

n ·Vt − 1

)
where Vt is the forward voltage drop at 25 degrees C of an ideal junction, also given by

Vt =
kB ·T

q

8

where

kB = Boltzmann’s constant

T = temperature in degrees Kelvin

q = charge of the electron

most of these are constants that the program already knows about. The ones we need to
supply are the ones listed in the properties editor window. For the DC characteristics,
most of the time, the only ones we need to worry about are Is, the saturation current, and
T, the temperature. If we are going to push relatively high currents through the diode
we can also include an estimate for the series resistance Rs; if we are worried about low
current behaviour then we need to add the reverse current parameter Isr.

How do we know what values to insert? Much could be written about device modeling;
much indeed has been written about device modeling. As always, we really have two
choices: use a value from someone else, or find our own values, usually by trial and error.

There are a great many models available for various simulation programs. Probably the
most freely available are those for spice, many of which can be downloaded from the
semiconductor companies. Here, for example, is a typical spice model for a 1N4148 diode:3

.model 1N4148 D(Is=0.1p Rs=16 CJO=2p Tt=12n Bv=100 Ibv=0.1p)

85-??-?? Original library

Any values not supplied are assumed to be the defaults.

The other way is to create your own device parameters, which is a bit like catching worms
before you can go fishing. Insert values, plot the resulting characteristics, see how they
compare with the published data sheet values, go back and adjust the values; continue
until satisfied or exhausted.

Here, for example, is a circuit for quickly comparing the forward characteristics of diodes
with different parameter values.

3I don’t know where this came from, so I can’t acknowledge the author. Most libraries are copyright,
even if freely available.

9

D2
Is=1e-14 A
N=1
Cj0=10 fF
M=0.5
Vj=0.7 V

D1
Is=1e-15 A
N=1
Cj0=10 fF
M=0.5
Vj=0.7 V

D3
Is=3e-18A
N=1
Cj0=10 fF
M=0.5
Vj=0.7 V

D4
Is=1e-9A
N=1.025
Cj0=10 fF
M=0.5
Vj=0.35 V

Idrive
I=Id1

Equation

Eqn1
Vd2=Vi2.V-Vd1.V
Vd3=Vi3.V-Vi2.V
Vd4=Vi4.V-Vi3.V
Export=yes

Parameter
sweep

SW1
Sim=DC1
Type=log
Param=Id1
Start=1e-6
Stop=1
Points=1000

dc simulation

DC1

Vi3

Vi4

Vi2

Vd1

And here is the plotted output...

1.0e-6 1.0e-5 1.0e-4 1.0e-3 0.01 0.1 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Id1
Id1
Id1
Id1

V
d

1
.V

V
d

2
V

d
3

V
d

4

Figure 3: Diode Forward Voltage

The green and purple curves are typical of 1N4148 and 1N4448 devices; the others are
medium and low-barrier Schottky devices. I have done a first pass compare with the data
sheets, but I can’t guarantee that these curves are any more than my best estimates.4

If you want to know more details of what each parameter does, there has been a great deal
written over the years, particularly for spice, on the subject; a google search will quickly

4I’m assuming you are sick of screenshots by now, so I’ve just printed the schematic and display files
from Qucs; you’ll find the print item in the file menu, and if you ask it nicely it will print a postscript file.

10

reveal most of it. Qucs comes with a document which lists the details of its models, and,
being open source, there is always the code itself.

Most of us end up taking a great deal on trust, and matching curves to data sheets as best
we can. This is yet another instance of one of the fundamentals of engineering, the Duck
Principle5: If you can’t detect any difference between the behaviour of your model and the
physical device, then they are, for engineering purposes, the same. Put it another way,
when the difference between the model and the real device drops below the usual level of
measurement uncertainty, it does matter any more.

In any case, component spreads in the real world tend to make the fine details of model
inaccuracies somewhat academic, as we shall see when we model more complex devices.

5Usually expressed as: If it looks like a duck, walks like a duck, quacks like a duck and tastes like a
duck, then, for all practical purposes, it is a duck.

11

