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Introduction

On 21 January 2006 Qucs 0.0.8 was released by the Qucs development team. This is the
first version of the package to include digital circuit simulation based on VHDL. FreeHDL1

being chosen as the VHDL engine. In the period following the release of Qucs 0.0.8 there
has been considerable activity centred around finding and correcting a number of bugs
in the Qucs digital simulation code. Many of these fixes are now included in the latest
CVS code and will eventually form part of the next Qucs release. This tutorial note is an
attempt on my part to communicate to other Qucs users a number of background ideas
concerning the capabilities and limitations of the current state of Qucs VHDL simulation.
Much of the information reported here was assembled by the author while assisting Michael
Margraf to test and debug the VHDL code generated by Qucs. In the future, if there is
enough interest in these notes, or indeed in Qucs VHDL simulation in general, I will update
them as the Qucs digital simulation features are improved.

Qucs digital simulation follows a complex set of steps that are mostly transparent to the
software user. In step one, a schematic representing a digital circuit under test is drawn.
This schematic consists of an interconnected group of Qucs digital components, one or
more user defined digital subcircuits (if required), and a copy of the digital simulation
icon with the timing or truth table parameters set. In step two, the information recorded
on a circuit schematic is converted into a text file containing VHDL statements. These
describe the circuit components, their connection, and a testbench for simulating circuit
performance. Next, FreeHDL is launched by Qucs to convert the VHDL code file into a
C++ source program. This is compiled to form an executable machine code simulation of
the original circuit. Finally, Qucs runs this program, collects signal data as digital signal
events take place and displays signal waveforms as a function of time or digital data in a
truth table format.

The VHDL code generated by Qucs 0.0.8 is limited in its scope by the following factors:

• Digital gates are described by data flow concurrent statements.

• Flip-flops and the digital signal generator are described by process statements.

• Component connection wires (signals) can only be of type bit as defined in the stan-
dard VHDL library2.

• Digital bus structures are not allowed in this release of the Qucs package.

1The FreeHDL Project, http://www.freehdl.seul.org/.
2Signal type bit only defines logic signals ’0’ and ’1’. Care must be taken to ensure that signal contention

does not occur during simulation because the resulting logic state cannot be modelled with type bit. Signal
contention can happen when two or more digital devices attempt to drive the same wire with logic ’0’ and
logic ’1’ signals at the same time. Moreover, it is not possible to simulate the performance of tristate
devices using VHDL signal type bit.
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• Digital subcircuits can be drawn as schematics and associated with a symbol in a
similar fashion to analogue subcircuits.

• Digital subcircuit pins can have type in, out, inout or analog. Qucs treats pins of
type analog the same as VHDL pin type inout.

• Once defined digital subcircuits may be placed and connected to other components
on schematics.

• Multiple copies of the same digital subcircuit are allowed on a single schematic.

• Digital subcircuits may also be nested; nesting has been tested to a depth of four.

Simulating simple digital circuits

The most basic form of digital circuit that can be simulated is one consisting entirely of
Qucs predefined digital components drawn on a schematic having only one level of design
hierarchy. The truth table for a simple combinational circuit of this type is shown in
Table 1.

Output F can be expressed in sum of products Boolean form as

F = A.B.C + A.B.C + A.B.C + A.B.C

On minimisation, using Boolean algebra or a Karnaugh map, output F becomes

F = A.C + B.C

The schematic for example 1 is illustrated in Fig. 1. This diagram was constructed using
the same techniques employed for drawing analogue schematics.

A B C F
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Table 1: Truth table for a logic circuit with inputs A, B, C and output F.
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Notes on drawing digital schematics

• The only predefined Qucs components that can be used to draw a digital circuit
schematic are (1) the digital components listed in the digital components icon window,
(2) the ground symbol, and (3) the digital simulation icon.

• A useful tip when drawing digital schematics is to adopt the matrix approach shown
in Fig. 1. Input signals flow from top to bottom of the schematic and output signals
are positioned on the right-hand side of a horizontal line. This makes checking the
circuit schematic for errors much easier than the case where diagrams have wires
connecting components in an unstructured way.

• Input and output wires (signals) should be given names consistant with the circuit
being simulated, A, B, C and F in Fig. 1. If the signal wires are not named by the
user, Qucs will allocate them different arbitrary names. This can make identification
and selection of signals for display on an output waveform graph, and indeed checking
for errors in a large circuit, much more difficult than it need be.

• Notice in Fig. 1 the international symbols for the logic gates are shown on the
schematic.
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Figure 1: Qucs schematic for minimised logic function F.
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VHDL code generated by Qucs

Clicking the Qucs Simulate menu button (or pressing key F2) starts the simulation process.
At an early phase in this process Qucs writes a text file to disk that contains the VHDL
code for the circuit being simulated. This file can be displayed by clicking on the show
last netlist drop down menu or by pressing key F6. The VHDL code produced by Qucs
for the circuit shown in Fig. 1 is presented in Table 2.

Signals identified by nnnet0 and nnnet1 in Table 2 have been allocated these names by Qucs;
nnnet0 and nnnet1 are internal signal nets that are not named on the circuit schematic
shown in Fig. 1. Fig. 2 illustrates the starting section of a typical Qucs digital functional
waveform plot. This style of plot illustrates signal events without component delays. If
required, signal delays can be specified for individual gates and other components (from
the component edit properties menu). The VHDL code generated for components with
delays will then reflect such changes, for example adding a 10 ns delay to signal CB in
Table 2 generates VHDL code

CB <= not C after 10 ns ;

Readers will probably have observed that the Qucs version number referred to in Table 2
VHDL listing is 0.0.9. This is the current CVS development version number. Qucs 0.0.9
includes a number of important bug fixes. The remainder of these notes assume readers
have downloaded, and recompiled, the latest CVS code from Sourceforge.net3.

dtime

a.X
b.X
c.X
f.X

0 10n 20n 30n 40n 50n 60n 70n 80n 90n 100n 110n 120n 130n 140n 150n 160n 170n 180n 190n 200n

Figure 2: Digital functional waveforms for the circuit shown in Fig. 1.

3Please note, Qucs Linux release 0.0.8 will normally simulate single hierarchy digital circuits without
error. However, Qucs 0.0.8 does fail at the VHDL to C++ conversion phase if a schematic includes more
than one ground symbol.
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−− Qucs 0 . 0 . 9 t u t 1 e x1 . sch
entity TestBench i s
end entity ;
use work . a l l ;

architecture Arch TestBench of TestBench i s
signal CB, A, B, F , C,

nnnet0 ,
nnnet1 : b i t ;

begin
nnnet0 <= C and A;
nnnet1 <= CB and B;
CB <= not C;

A: process
begin

A <= ’0 ’ ; wait for 40 ns ;
A <= ’1 ’ ; wait for 40 ns ;

end process ;

B: process
begin

B <= ’0 ’ ; wait for 20 ns ;
B <= ’1 ’ ; wait for 20 ns ;

end process ;

F <= nnnet1 or nnnet0 ;

C: process
begin

C <= ’0 ’ ; wait for 10 ns ;
C <= ’1 ’ ; wait for 10 ns ;

end process ;

end architecture ;

Table 2: VHDL code for the circuit shown in Fig. 1.
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Truth tables

Truth tables are one of the most fundamental and convenient ways of displaying digital
circuit data. Qucs has a built-in facility that allows a truth table to be generated from
a schematic drawing. This feature is particularly useful when checking minimised logic
designs for errors. Lets consider a simple but instructive example: A logic circuit has four
binary inputs A, B, C, and D, and one output P. Output P is logic ’1’ when inputs ABCD
are numbers in the decimal sequence 3, 5, 7, 11 and 13. In Boolean sum of product form

P = A.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D

This simplifies to

P = D.(A.B + B ⊕ C)

The schematic for the sum of products equation for P is shown in Fig. 3(a). Similarly
Fig. 3(b) presents the schematic for a minimised P equation. Setting the digital simulation
type to TruthTable, rather than TimeList, causes Qucs on pressing key F2, to generate
a truth table based on the information provided on a circuit schematic. The number of
truth table inputs, and indeed outputs, correspond to the number of input generators and
the number of named outputs. Truth tables for both schematics are given in Table 3(a)
and 3(b). Comparing these two tables clearly indicates that they are not identical and
moreover confirms that the minimised solution is not correct. Reworking the minimisation
procedure points to the error being a missing signal inversion. The correct Boolean equation
for P is

P = D.(A.B + B ⊕ C)
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3(a): Truth table for sum of products equa-
tion P

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

a.X
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

b.X
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

c.X
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

d.X
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

p.X
0
0
0
1
0
1
0
1
0
0
0
1
0
1
0
0

3(b): Truth table for minimised equation P

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

a.X
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

b.X
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

c.X
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

d.X
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

p.X
0
0
0
1
0
1
0
0
0
0
0
1
0
1
0
1
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Digital subcircuits

Although it is possible to draw complex schematic diagrams using only the predefined
digital components supplied with Qucs, this technique can be extremely tedious, and is
of course, prone to error. When drawing large schematics we require a design procedure
that naturally subdivides groups of digital components into self contained units. These
units can then be treated in the same way as basic digital components when placing and
connecting them on a schematic drawing. In the world of analogue and digital circuit
design such units are often called subcircuits.4 A subcircuit is defined by three major
attributes plus a number of other properties. The major attributes are, firstly a digital
circuit that defines circuit function, secondly a circuit symbol that depicts a circuit in
a higher level of a design hierarchy, and thirdly the subcircuit input/output pins shown
on the subcircuit symbol. Other properties include for example, signal path delays. The
process for generating digital subcircuits is identical to that used for analogue subcircuits.
It is best demonstrated by considering an example. Figure 4 shows the schematic for a
four input combinational circuit.

After drawing a subcircuit schematic, input and output5 pins are attached to signal ports.
Input port pins of type in are shown on circuit diagrams as a green symbol, signals W, X, Y,
and Z, in Fig. 4. Ouput port pins of type out are coloured red, signal G in Fig. 4. Signal flow
through a port is indicated by the direction of the port symbol arrow head. Input/output
signals, and any other signals that need to be easily identified, are also named. Once
the subcircuit schematic is complete, pressing key F3 causes Qucs to generate a subcircuit
symbol. The drawing tools listed as icons in the Qucs paintings window can be used to edit
Qucs generated subcircuit symbols. The input/output port pins on a subcircuit symbol
have the same type and name as those on the original subcircuit schematic. Fig. 5 shows the
finished symbol for subcircuit COMB1. In these notes, symbol outlines are shown drawn
in accordance with the international code for logic symbols6. To test our new subcircuit
we place it’s symbol on a blank drawing sheet and apply test signals to the input pins
and observe the signals at the output pin. Fig. 6 shows a typical test circuit. Subcircuit
Gen4bit generates a 4 bit test pattern synchronised to the input of a digital clock. The
specification for Gen4bit is given in the next section of these notes7. The test pattern
waveform and output signal G are shown plotted as a function of time in Fig. 7.

4The circuit simulator SPICE is a well known example of a widely used CAD program that makes
extensive use of subcircuits in circuit design.

5Qucs 0.0.8 has a bug which causes a VHDL compile error when subcircuit pins are specified as type
out. A work around for this bug is to specify subcircuit output pins as type analog. The Qucs routines
that generate the circuit VHDL code convert pin type analog into VHDL type inout. FreeHDL is then
able to compile the generated VHDL code without error. This bug has been corrected in Qucs 0.0.9.

6Ian, Kampel, A practical introduction to the new logic symbols, Butterworths, 1985, ISBN 0-408-
01461-X.

7Subcircuit Gen4bit includes other nested subcircuits. Qucs 0.0.8 has a bug that causes VHDL compile
errors with some configurations of nested subcircuits. This has been fixed in version 0.0.9.
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Figure 6: Test schematic for a logic circuit with inputs W, X, Y, Z, and output G.
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Figure 7: Digital functional waveforms for a logic circuit with inputs W, X, Y, Z, and
output G.
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Building a digital component library

The Qucs graphical user interface includes good project handling features. Combining
these features with the Qucs subcircuit capabilities provides all the tools required for the
development of a library of common digital components. Such a library can be stored in
a master project and the individual component files imported into other projects when
required. Here are a few components that I developed during a recent series of tests aimed
at detecting bugs in the VHDL code generated by Qucs.

Logic zero

L0

SUB
File=name

0
L0

Logic one

L1

SUB
File=name

1 1

Y1

L1
L1

G2bit - 2 bit pattern generator

SUB
File=name

B1

B0

CLK

B0

B1

RES R

Gen2bit
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MUX2to1 - 2 input to 1 output multiplexer

EN A Y
1 X L
0 0 D0
0 1 D1

SUB
File=name

MUX

ENB

A
Y

D1

D0

EN

0

1

0 0} G
1

1

Y4&

Y3

&

Y2

1

Y1
YA

D0

D1

D1

Y
D0

A
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MUX4to1 - 4 input to 1 multiplexer

B A EN Y
X X 1 0
0 0 0 D0
0 1 0 D1
1 0 0 D2
1 1 0 D3

SUB
File=name

ENB

A

B

D0

D1

D3

D2

Y

MUX
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&

Y2

&
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&
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2 bit adder
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}

ΣA}
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SUB
File=name
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&
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&
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1

Y7
&
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&
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1

Y3

=1

Y10
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A2B2CI A1B1

S1

S2
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Subcircuit VHDL code generated by Qucs

Qucs generates a separate entity-architecture model for each subcircuit. These component
definitions are compiled into the work library by FreeHDL. Here is the VHDL code from
two of the previous examples.

Gen2bit
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entity Sub gen2bit i s
port (CLK: in b i t ;

R: in b i t ;
nnout B0 : out b i t ;
nnout B1 : out b i t ) ;

end entity ;
use work . a l l ;
architecture Arch Sub gen2bit of Sub gen2bit i s

signal B0b ,
B1b ,
JK,
nnnet0 ,
B0 ,
B1 : b i t ;

begin
FF0 : process ( nnnet0 , R, CLK)
begin

i f (R= ’1 ’) then B0 <= ’0 ’ ;
e l s i f ( nnnet0 = ’1 ’) then B0 <= ’1 ’ ;
e l s i f (CLK= ’1 ’ and CLK’ event ) then

B0 <= (JK and not B0) or (not JK and B0 ) ;
end i f ;

end process ;
B0b <= not B0 ;

FF1 : process ( nnnet0 , R, B0b)
begin

i f (R= ’1 ’) then B1 <= ’0 ’ ;
e l s i f ( nnnet0 = ’1 ’) then B1 <= ’1 ’ ;
e l s i f (B0b= ’1 ’ and B0b ’ event ) then

B1 <= (JK and not B1) or (not JK and B1 ) ;
end i f ;

end process ;
B1b <= not B1 ;

SUB2 : entity Sub l o g i c z e r o port map ( nnnet0 ) ;
nnout B0 <= B0 or ’ 0 ’ ;
nnout B1 <= B1 or ’ 0 ’ ;
SUB1 : entity Sub Logic one port map (JK) ;

end architecture ;

2 bit adder

entity Sub fadd 2bi t i s
port (A1 : in b i t ;

B1 : in b i t ;
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A2 : in b i t ;
B2 : in b i t ;
CI : in b i t ;
nnout S1 : out b i t ;
nnout S2 : out b i t ;
nnout CO : out b i t ) ;

end entity ;
use work . a l l ;
architecture Arch Sub fadd 2bit of Sub fadd 2bi t i s

signal nnnet0 ,
nnnet1 ,
nnnet2 ,
nnnet3 ,
nnnet4 ,
nnnet5 ,
nnnet6 ,
S2 ,
CO,
S1 : b i t ;

begin
S1 <= CI xor B1 xor A1 ;
nnnet0 <= B2 xor A2 ;
nnnet1 <= nnnet0 and nnnet2 ;
nnnet3 <= B2 and A2 ;
nnnet2 <= nnnet4 or nnnet5 ;
nnnet4 <= nnnet6 and CI ;
nnnet5 <= B1 and A1 ;
S2 <= B2 xor A2 xor nnnet2 ;
CO <= nnnet3 or nnnet1 ;
nnnet6 <= B1 xor A1 ;
nnout S2 <= S2 or ’ 0 ’ ;
nnout CO <= CO or ’ 0 ’ ;
nnout S1 <= S1 or ’ 0 ’ ;

end architecture ;

Notes on subcircuit VHDL generation

• Qucs predefined digital components generate concurrent data flow signal statements
or process statements.

• Previously defined subcircuit symbols generate VHDL port map statements.

• Type out entity port signals are prevented from being read as input signals by masking
each output signal using the logic function signal-name OR ’0’.8

8Attempting to read entity port signals of type out results in a VHDL compile error.
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• A VHDL

use work . a l l ;

statement is included before each subcircuit architecture definition to ensure that
FreeHDL can find any nested subcircuits 9.

• The complete VHDL code file for a digital design is composed from an outer test
bench entity-architecture model plus entity-architecture models for each subcircuit
specified in the design,

Subcircuit nesting: A more complex design example

In theory there is no limit to the depth of subcircuit nesting allowed by Qucs. In practice
most digital circuit schematics can be constructed with a maximum of four or five levels of
design hierarchy. Figure 8 shows an example that was used to test Qucs subcircuit nesting
performance. The design is a simple RTL function that uses a multiplexer to transfer data
from one of two input registers to a single output register. The next section of these notes
outlines in detail the specification of the subcircuits needed to build the RTL design. A
set of sample simulation waveforms showing the register transfer operation are illustrated
in Fig. 9.

9Strictly speaking it should not be necessary to specifically state the use of the work library as this
library is normally visible at all times when compiling entity-architecture models. However, at this stage
in the development of FreeHDL it does appear that it is necessary when using the default FreeHDL VHDL
library mapping.

20



4 bit RTL design
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Figure 8: Top level schematic.
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D flip-flop with load enable
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QuadMux
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dtime

clock.X
control1.X
control2.X
load.X
r1q0.X
r1q1.X
r1q2.X
r1q3.X
r2q0.X
r2q1.X
r2q2.X
r2q3.X
r3d0.X
r3d1.X
r3d2.X
r3d3.X
r3q0.X
r3q1.X
r3q2.X
r3q3.X

370n 380n 390n 400n 410n 420n 430n 440n 450n 460n 470n 480n 490n 500n 510n 520n 530n 540n 550n

Figure 9: Sample simulation waveforms for RTL design.

Update number one: May 2006

Although it is only a short time since the first version of these digital tutorial notes was
posted on the Qucs Sourceforge Web site, much has happened in the world of Qucs digital
simulation. Bugs in the Qucs code have been found, and fixed, and a range of new features
added to the software. These expand the power of Qucs digital simulation and give users a
glimpse of how the package will evolve in the future. The purpose of these notes is firstly
to update readers as to the changes to Qucs digital simulation and secondly to explain how
to use the new Qucs features. Please note however, they are not intended to teach readers
how to program using VHDL.10

Bugs, corrections and small changes to the Qucs digital simulation
code

All the bugs reported in the first version of these notes have been corrected in the latest
Qucs CVS code. These corrections are, of course, also included in Qucs release 0.0.9.
During testing a number of other annoying, but significant, bugs have also been found and
eliminated, these include

• Multiple input gates (three or more inputs) of types nand and nor failed at the
FreeHDL compile stage due to an error in the VHDL code generated by Qucs.

10A good introduction to the VHDL language and it’s application in digital system design can be found
in Digital System Design using VHDL by Charles H. Roth, Jr, PWS Publishing Company, 1997,
ISBN 0-534-95099-X.
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• Signals names and, for example, component names constructed from a single letter
that was an abbreviation for a physical unit failed to compile.

• Changing digital component time delays caused component connections on a sche-
matic to be removed.

• GUI problems caused by errors in the symbol rotation and mirror code.

• Qucsconv code conversion errors caused the Qucs digital simulation cycle to fail before
plotting TimeList waveforms.

A number of changes to either the VHDL code generated by Qucs or the schematic capture
GUI have been introduced, these include

• The VHDL code generated by Qucs for the ground symbol has been changed from

gnd <= gnd and ’ 0 ’ ;

to

gnd <= ’0 ’ ;

• The symbol for digital inout ports has been changed from the analogue pin symbol
to one that consists of the digital in and out pins drawn back-to-back. This reflects
the bidirectional status of an inout port.

A more complete list of all the bug corrections and other program modifications can be
found in the Qucs change log files.

New digital simulation features

The flow diagram illustrated in Fig. 10 shows a number of different simulation routes for
a digital circuit under test. The Qucs digital simulation facilities have been improved to
include direct simulation of VHDL testbench code and the simulation of circuit schematics
that include digital components specified by VHDL entity-architecture models. The various
combinations that users can adopt for Qucs digital circuit entry are as follows:

1. Schematic circuit entry using predefined digital component symbols, subcircuits gen-
erated using the same symbols and a copy of the digital simulation icon; this is the
approach described in the first version of these tutorial notes.

2. Circuit entry identical to 1 plus symbols for digital components specified by VHDL
entity-architecture models.

3. Circuit entry using the Qucs VHDL code editor. The text entered describes both
the circuit under test and the test vectors needed to drive the circuit inputs during
simulation.

Once the circuit under test has been entered into Qucs, clicking the Simulate menu button,
or pressing key F2, starts the Qucs digital simulation process.
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Figure 10: Flow diagram of Qucs digital simulation routes.
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Limitations

Before describing the new digital simulation features it is important that readers under-
stand the limitations that are inherent in the various digital simulation routes described
in the last section and illustrated in the flow diagram shown in Fig. 10. Qucs schematic
capture allows users to draw circuits consisting of predefined component symbols and sub-
circuit symbols. At this stage in the development of the GUI digital signals must be of
type bit (as defined in the VHDL standard library - library STD in the FreeHDL package)
where individual signals flow through a single wire. Qucs schematic drawing bus structures
of VHDL type bit-vector, for example, have not been implemented yet. This implies that
the device symbol port pins must represent single signals. Similarly the nets connecting
pins on more than one device can only be single signal nets and not bus structures. It is
anticipated that this will change in a future Qucs release.

Although the current release of FreeHDL is 0.0.1 the package implements a substantial
subset of the entire VHDL language11. The major features not supported by release 0.0.1
are:

• Shared variables.

• The following attributes; transaction, quiet, stable and delayed.

• User defined attributes.

• Groups.

• Guarded signal assignments.

• Currently drivers cannot be switched off.

The Qucs TimeList plotting program uses signal data output by the machine code simula-
tion program generated by the FreeHDL package12. A current limitation of the TimeList
plotting program is that it can only display signals of type bit. Bus signal waveforms
cannot be displayed.

Given the above limitations it is therefore possible to write VHDL code that can be com-
piled by FreeHDL but will cause problems at either the schematic drawing or output
waveform plotting stages in the Qucs simulation cycle. As Qucs develops it is expected
that these limitations will be removed. On the subject of limitations one final point to
note: FreeHDL can simulate circuits described by the data types and other features found
in the

11A complete description of the 1987 and 1993 specifications of the VHDL language can be found in
The Designer’s Guide to VHDL by Peter J Ashenden, second edition 2002, Morgan Kaufmann Publishers,
ISBN 1-55860-674-2.

12The machine code simulation program outputs signal data in VCD format. This is then converted to
the Qucs TimeList data format by the qucsconv utility program.

28



IEEE.std_logic_1164

library and other predefined libraries. However, at this stage in the development of the
Qucs software only the VHDL standard library may be used, implying that data type bit
must be used to represent logic signals.

Using the Qucs VHDL editor

Qucs release 0.0.9 includes a VHDL text editor13 that has all the usual edit features plus
colour coding of the various VHDL language statements. One unusual feature of this editor
is a zoom control that allows the text size to be increased or decreased in a similar way
to the schematic drawing zoom. The VHDL editor is included in the Qucs package for
two primary purposes, firstly for purely text file VHDL simulation14 and secondly for the
development of VHDL entity-architecture models that can be linked to schematic capture
symbols. The latter increases significantly the capabilities of the Qucs software in that it
allows libraries of hand-crafted device models to be constructed. These new library devices
will, given support by the general Qucs user community, greatly expand the potential use of
the Qucs package. In this section the use of the VHDL text editor is demonstrated through
a series of digital circuit simulation examples. The included VHDL listings indicate typical
Qucs use of a number of the basic VHDL data types. The text also outlines any limitations
imposed by Qucs.

• Example 1: A sum of products (SOP) combinational digital circuit.

The Boolean equation15 for a SOP combinational circuit is:

f = W.X.Y .Z + W.X.Y .Z + W.Y .Z + W.X.Y.Z

The VHDL code for a structural model of this combinational circuit and its associated
testbench is given in the following listing.

−− Qucs VHDL ed i t o r example 1
−−
entity t e s t v e c t o r i s −− Test v ec t o r genera tor .

port ( z , y , x , w : out b i t
) ;

end entity t e s t v e c t o r ;
−−
architecture behav ioura l of t e s t v e c t o r i s

13To launch the new VHDL editor click on the second icon from the left on the Qucs toolbar. It can
also be activated using the key sequence Ctrl+Shift+V.

14This is still the preferred method amongst many experienced users of VHDL. However, the circuit
schematic drawing approach does seem to be growing in popularity.

15The Boolean equation for function f has not been minimised. It is in a form derived directly from a
truth table and is introduced purely as an example to demonstrate the use of the Qucs VHDL editor.
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begin
pz : process i s

begin
z <= ’0 ’ ; wait for 20 ns ;
z <= ’1 ’ ; wait for 20 ns ;

end process pz ;
py : process i s

begin
y <= ’0 ’ ; wait for 40 ns ;
y <= ’1 ’ ; wait for 40 ns ;

end process py ;
px : process i s

begin
x <= ’0 ’ ; wait for 80 ns ;
x <= ’1 ’ ; wait for 80 ns ;

end process px ;
pw : process i s

begin
w <= ’0 ’ ; wait for 160 ns ;
w <= ’1 ’ ; wait for 160 ns ;

end process pw;
end architecture behav ioura l ;
−−
entity and4 i s −− 4 input and ga te .

port ( in1 , in2 , in3 , in4 : in b i t ;
out1 : out b i t

) ;
end entity and4 ;
−−
architecture dataf low of and4 i s
begin

out1 <= in1 and in2 and in3 and in4 ;
end architecture dataf low ;
−−
entity and3 i s −− 3 input and ga te .

port ( in1 , in2 , in3 : in b i t ;
out1 : out b i t

) ;
end entity and3 ;
−−
architecture dataf low of and3 i s
begin

out1 <= in1 and in2 and in3 ;
end architecture dataf low ;
−−
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entity or4 i s −− 4 input or ga te .
port ( in1 , in2 , in3 , in4 : in b i t ;

out1 : out b i t
) ;

end entity or4 ;
−−
architecture dataf low of or4 i s
begin

out1 <= in1 or in2 or in3 or in4 ;
end architecture dataf low ;

entity inv i s −− I n v e r t e r .
port ( in1 : in b i t ;

out1 : out b i t
) ;

end entity inv ;
−−
architecture dataf low of inv i s
begin

out1 <= not in1 ;
end architecture dataf low ;
−−
entity te s tbench i s −− Test bench outer e n t i t y wrapper .
end entity te s tbench ;
−−
l ibrary work ;
use work . a l l ;
−−
architecture s t r u c t u r a l of te s tbench i s −− Testbench a r c h i t e c t u r e .
signal b0 , b1 , b2 , b3 , zb , yb , xb , wb, a , b , c , d , f : b i t ;
begin

d1 : entity t e s t v e c t o r port map(b0 , b1 , b2 , b3 ) ;
d2 : entity inv port map(b0 , wb ) ;
d3 : entity inv port map(b1 , xb ) ;
d4 : entity inv port map(b2 , yb ) ;
d5 : entity inv port map(b3 , zb ) ;
d6 : entity and4 port map( zb , yb , b1 , wb, a ) ;
d7 : entity and4 port map( zb , yb , xb , wb, b ) ;
d8 : entity and3 port map( zb , yb , b0 , c ) ;
d9 : entity and4 port map(b0 , b1 , b2 , b3 , d ) ;
d10 : entity or4 port map( a , b , c , d , f ) ;

end architecture s t r u c t u r a l ;

On entry of this code into the Qucs VHDL text editor the text is colour coded. Un-
fortunately, the colour coding is lost when printed, or pasted into a word processor,
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or a layout package like LaTeX. The structure of the VHDL listing follows the nor-
mal convention for text based VHDL simulation. All component entity-architecture
models must be defined before they are referenced in other component models. The
simulation test bench must be the last entity-architecture model in the VHDL list-
ing. During the VHDL compile phase FreeHDL compiles the component entity-
architecture models to the work library16. These compiled models are then made
available to the simulation test bench through the use of the VHDL use statement
inserted in the listing prior to the testbench architecture statement. Once the VHDL
listing for the simulation has been typed into the Qucs VHDL code editor, pressing
key F2 starts the simulation process. The simulation duration can be set using the
Document Settings in the File dropdown menu (or by pressing the Ctrl+. keys).
Any VHDL syntax errors, or indeed typos, are written to file and can be viewed by
pressing key F5. Obviously if errors are reported these need to be corrected using
the VHDL text editor and the simulation cycle restarted. A typical TimeList output
for editor example 1 is shown in Fig. 11.

dtime

b0.X
b1.X
b2.X
b3.X
f.X

0 20n 40n 60n 80n 100n 120n 140n 160n 180n 200n 220n 240n 260n 280n 300n 320n

Figure 11: Sample simulation waveforms for VHDL editor example 1 design.

• Example 2: VHDL editor example 1 modelled using dataflow VHDL statements.

The VHDL code for the second example is given in the next listing. The VHDL
style chosen to model the circuit is based on VHDL dataflow concurrent signal as-
signments. The input text vectors are generated using a simple state machine rather
than separate process statements. The test vector generator port specification uses
entirely single signal bit types and can be easily interfaced, without problems, to
other components connected on a Qucs schematic diagram. The procedure for gen-
erating schematic capture component symbols from entity - architecture models is
introduced in a later section of these notes. The use of bit vector bus constructions
is also illustrated in this example. Qucs allows the use of bit vectors as signals or
variables in VHDL models provided all signals in the port statement of entity dec-
laration are of type bit only.17 A typical TimeList output for editor example 2 is
shown in Fig. 12.

16In most VHDL implementations library work is always visible and there is no requirement to make it
visible by using the library and use statements. However, FreeHDL appears to need these statements at
the linking phase otherwise the VHDL compiler fails.

17This is a restriction of Qucs 0.0.9 and will be removed in a later release of the package. Also note
signals of type bit vector that are declared in architecture definitions are listed in the TimeList plot signal
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−− Qucs VHDL ed i t o r example 2
−−
entity t e s t v e c t o r a i s

port ( RESET, CLOCK : in b i t ;
B0 , B1 , B2 , B3 : out b i t

) ;
end entity t e s t v e c t o r a ;
−−
architecture behav ioura l of t e s t v e c t o r a i s
signal pr e s en t s t a t e , n ex t s t a t e : b i t v e c t o r (3 downto 0):= ”1111 ” ;
begin
−−
p1 : process (CLOCK ) i s

begin
i f (CLOCK’ event and CLOCK= ’1 ’) then

p r e s e n t s t a t e <= nex t s t a t e ;
end i f ;

end process p1 ;
−−
p2 : process (RESET, p r e s e n t s t a t e ) i s

begin
i f (RESET = ’1 ’ ) then nex t s t a t e <= ”1111 ” ;
end i f ;

case p r e s e n t s t a t e i s
when ”0000 ” => nex t s t a t e <= ”0001 ” ;
when ”0001 ” => nex t s t a t e <= ”0010 ” ;
when ”0010 ” => nex t s t a t e <= ”0011 ” ;
when ”0011 ” => nex t s t a t e <= ”0100 ” ;
when ”0100 ” => nex t s t a t e <= ”0101 ” ;
when ”0101 ” => nex t s t a t e <= ”0110 ” ;
when ”0110 ” => nex t s t a t e <= ”0111 ” ;
when ”0111 ” => nex t s t a t e <= ”1000 ” ;
when ”1000 ” => nex t s t a t e <= ”1001 ” ;
when ”1001 ” => nex t s t a t e <= ”1010 ” ;
when ”1010 ” => nex t s t a t e <= ”1011 ” ;
when ”1011 ” => nex t s t a t e <= ”1100 ” ;
when ”1100 ” => nex t s t a t e <= ”1101 ” ;
when ”1101 ” => nex t s t a t e <= ”1110 ” ;
when ”1110 ” => nex t s t a t e <= ”1111 ” ;
when ”1111 ” => nex t s t a t e <= ”0000 ” ;

end case ;
B3 <= nex t s t a t e ( 3 ) ; B2 <= nex t s t a t e ( 2 ) ;
B1 <= nex t s t a t e ( 1 ) ; B0 <= nex t s t a t e ( 0 ) ;

dialogue. However, a text message saying no data results if an attempt is made to display them. Again
this limitation will be removed in a later release of Qucs.
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end process p2 ;
end architecture behav ioura l ;
−−
l ibrary work ;
use work . a l l ;
−−
entity te s tbench i s
end entity te s tbench ;
−−
architecture dataf low of te s tbench i s
signal r e s e t , c lk , b0 , b1 , b2 , b3 , zb : b i t ;
signal yb , xb , wb, a , b , c , d , f : b i t ;
begin
p1 : process i s

begin
c l k <= ’0 ’ ; wait for 10 ns ;
c l k <= ’1 ’ ; wait for 10 ns ;

end process p1 ;
−−
p2 : process i s

begin
r e s e t <= ’1 ’ ; wait for 10 ns ;
r e s e t <= ’0 ’ ; wait for 2000 ns ;

end process p2 ;
−−
d1 : entity t e s t v e c t o r a port map( r e s e t , c lk , b0 , b1 , b2 , b3 ) ;
−−
−− Data f l ow model o f combinat iona l c i r c u i t

wb <= not b0 ; xb <= not b1 ; yb <= not b2 ; zb <= not b3 ;
a <= (wb and b1 ) and ( yb and zb ) ;
b <= (wb and xb ) and ( yb and zb ) ;
c <= b0 and ( yb and zb ) ;
d <= (b0 and b1 ) and ( b2 and b3 ) ;
f <= a or b or c or d ;

end architecture dataf low ;

• Example 3: VHDL editor example 1 modelled using VHDL process statements and
variables.

The VHDL code for the third example is given in the listing at the end of this
paragraph. In this example the use of VHDL variables is illustrated. The VHDL code
for the vector generator is a little unusual in that rather than using the traditional
two process design employing signals, a single process statement employing variables
undertakes both the calculation of the next state data and the transfer of the next
state information to the present state. This approach is necessary because FreeHDL
does not allowed shared variables. Once again in this example only single bit data
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dtime

reset.X
b0.X
b1.X
b2.X
b3.X
f.X

0 10n 20n 30n 40n 50n 60n 70n 80n 90n 100n 110n 120n 130n 140n 150n 160n 170n

Figure 12: Sample simulation waveforms for VHDL editor example 2 design.

is passed via the entity statement to the device under test. The device under test
is represented by a truth table encoded in a process statement. This is not the
most elegant code but it does serve the purpose of demonstrating the use of different
VHDL constructions and data types in Qucs digital simulation. A typical TimeList
plot for VHDL editor example 3 is shown in Fig. 13. Comparison of the three output
plots for the VHDL editor examples indicates that all the simulation results are very
similar with some slight differences in the start up phase following the RESET pulse
changing from logic ’1’ to logic ’0’. This is probably an effect due to the different
initialisation sequences for each of the test vector models.

−− Qucs VHDL ed i t o r example 3
−−
entity t e s t v e c t o r b i s

port ( RESET, CLOCK : in b i t ;
B0 , B1 , B2 , B3 : out b i t

) ;
end entity t e s t v e c t o r b ;
−−
architecture behav ioura l of t e s t v e c t o r b i s
begin
p1 : process (RESET, CLOCK) i s

variable pr e s en t s t a t e , n ex t s t a t e :
b i t v e c t o r (3 downto 0):= ”0000 ” ;

begin
i f (RESET = ’1 ’ ) then nex t s t a t e := ”0000 ” ;
e l s i f (CLOCK’ event and CLOCK= ’1 ’) then

p r e s e n t s t a t e := nex t s t a t e ;
case p r e s e n t s t a t e i s
when ”0000 ” => nex t s t a t e := ”0001 ” ;
when ”0001 ” => nex t s t a t e := ”0010 ” ;
when ”0010 ” => nex t s t a t e := ”0011 ” ;
when ”0011 ” => nex t s t a t e := ”0100 ” ;
when ”0100 ” => nex t s t a t e := ”0101 ” ;
when ”0101 ” => nex t s t a t e := ”0110 ” ;
when ”0110 ” => nex t s t a t e := ”0111 ” ;
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when ”0111 ” => nex t s t a t e := ”1000 ” ;
when ”1000 ” => nex t s t a t e := ”1001 ” ;
when ”1001 ” => nex t s t a t e := ”1010 ” ;
when ”1010 ” => nex t s t a t e := ”1011 ” ;
when ”1011 ” => nex t s t a t e := ”1100 ” ;
when ”1100 ” => nex t s t a t e := ”1101 ” ;
when ”1101 ” => nex t s t a t e := ”1110 ” ;
when ”1110 ” => nex t s t a t e := ”1111 ” ;
when ”1111 ” => nex t s t a t e := ”0000 ” ;

end case ;
end i f ;

B3 <= nex t s t a t e ( 3 ) ; B2 <= nex t s t a t e ( 2 ) ;
B1 <= nex t s t a t e ( 1 ) ; B0 <= nex t s t a t e ( 0 ) ;

end process p1 ;
end architecture behav ioura l ;
−−
l ibrary work ;
use work . a l l ;
−−
entity te s tbench i s
end entity te s tbench ;
−−
architecture dataf low of te s tbench i s
signal r e s e t , c lk , b0 , b1 , b2 , b3 , f : b i t ;
begin
p1 : process i s

begin
c l k <= ’0 ’ ; wait for 10 ns ;
c l k <= ’1 ’ ; wait for 10 ns ;

end process p1 ;
−−
p2 : process i s

begin
r e s e t <= ’1 ’ ; wait for 10 ns ;
r e s e t <= ’0 ’ ; wait for 2000 ns ;

end process p2 ;
−−
d1 : entity t e s t v e c t o r b port map( r e s e t , c lk , b0 , b1 , b2 , b3 ) ;
−−
−− Behavioura l model o f combinat iona l c i r c u i t
p3 : process (b3 , b2 , b1 , b0 ) i s

variable SEL : b i t v e c t o r (3 downto 0 ) ;
begin

SEL := b3&b2&b1&b0 ;
i f (SEL = ”0010 ”) then f <= ’1 ’ ;
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e l s i f (SEL = ”0000 ”) then f <= ’1 ’ ;
e l s i f (SEL = ”1111 ”) then f <= ’1 ’ ;
e l s i f (SEL = ”0001 ”) then f <= ’1 ’ ;
e l s i f (SEL = ”0011 ”) then f <= ’1 ’ ;
else f <= ’0 ’ ;
end i f ;

end process p3 ;
end architecture dataf low ;

dtime

reset.X
b0.X
b1.X
b2.X
b3.X
f.X

0 10n 20n 30n 40n 50n 60n 70n 80n 90n 100n 110n 120n 130n 140n 150n 160n 170n

Figure 13: Sample simulation waveforms for VHDL editor example 3 design.

Linking VHDL entity-architecture models to Qucs schematic de-
vice symbols

VHDL was originally developed as a hardware description language for specifying digital
systems. Indeed many engineers still prefer to describe digital systems entirely in VHDL
statements rather than use schematic drawings. Once written VHDL code is saved as a
text file and becomes the input data for a VHDL compiler/simulation package. Through
popular demand a number of digital synthesis/simulator CAD tools18 have started to in-
clude a facility that links VHDL model code to a schematic capture symbol. It is then,
of course, possible to use a schematic diagram as the main entry media19 when designing
and simulating a digital design. Qucs release 0.0.9 has such a facility, allowing VHDL code
models to be linked to schematic symbols. When drawing digital design schematics, these
user defined symbols may be mixed with the Qucs predefined digital symbols and other user
defined subcircuit symbols. The process for linking VHDL code to Qucs schematic drawing
symbols is straightforward and will be illustrated in these notes through two examples.

• Example 4: A 4 bit test vector pattern generator.

Shown in Table 4 is the VHDL entity-architecture model listing for a 4 bit binary
pattern generator. The VHDL code is identical to the test vector code introduced

18See for example the XILINX, WebPACK software at http//www.xilinx.com/ise/logic_design_
prod/webpack.htm.

19Please note that at the start of the VHDL simulation process schematic drawings are converted into
a VHDL text file.
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in the third VHDL editor example. After entering the VHDL entity-architecture
model code using the Qucs VHDL editor the finished text is saved in a file with a
suitable name and file extension vhdl. Qucs then lists the model under the VHDL
project category. Simply clicking on a model name in the VHDL category, with
the left hand mouse button, then moving the mouse pointer to a suitable position
on a schematic, causes Qucs to move a symbol that represents the model onto the
schematic drawing sheet. Placement of the symbol at the position located by the
mouse pointer is achieved by clicking the left hand mouse button. The procedure is
identical to that used to select and place the Qucs predefined symbols on a schematic
drawing. Qucs automatically generates a rectangular symbol with a name called
VHDL that has the same number of pins as the port statement listed in the VHDL
model entity statement. Each of the pins is given a name that corresponds to a name
in the entity statement. Qucs fixes the order of the pins on the generated symbol.
It appears that it is not possible to edit this symbol. However, subcircuit in, out
or inout port symbols can be attached to symbol VHDL and a user edited symbol
generated. Fig. 14 shows the Qucs generated VHDL symbol with attached ports for
the model listed in Table 4. The edited symbol for the 4 bit binary pattern generator
is illustrated in Fig. 15. Notice that in Fig. 15 the order of the pins has been changed
to reflect the natural order for a device with it’s input pins on the left and output
pins on the right. VHDL model symbols can also be generated by placing the VHDL
file component, this is located in the digital components viewlist, on a schematic. On
editing the VHDL file name property of this device to the name of a VHDL entity-
architecture model file, Qucs automatically generates a VHDL symbol. Defining your
own symbol then proceeds in a similar fashion to the way described above.

RESET
Num=1

B0
Num=3

B2
Num=5

B1
Num=4

B3
Num=6

CLOCK
Num=2

vhdl

RESET CLOCK

B0 B1

B2 B3

X1

Figure 14: Qucs generated VHDL symbol with subcircuit ports for test pattern generator.

• Example 5: A 4 bit full adder.

38



entity patgen 4b i t i s
port ( RESET, CLOCK : in b i t ;

B0 , B1 , B2 , B3 : out b i t
) ;

end entity patgen 4b i t ;
−−
architecture behav ioura l of patgen 4b i t i s
begin
p1 : process (RESET, CLOCK) i s

variable pr e s en t s t a t e , n ex t s t a t e :
b i t v e c t o r (3 downto 0):= ”0000 ” ;

begin
i f (RESET = ’1 ’ ) then nex t s t a t e := ”0000 ” ;
e l s i f (CLOCK’ event and CLOCK= ’1 ’) then
p r e s e n t s t a t e := nex t s t a t e ;
case p r e s e n t s t a t e i s
when ”0000 ” => nex t s t a t e := ”0001 ” ;
when ”0001 ” => nex t s t a t e := ”0010 ” ;
when ”0010 ” => nex t s t a t e := ”0011 ” ;
when ”0011 ” => nex t s t a t e := ”0100 ” ;
when ”0100 ” => nex t s t a t e := ”0101 ” ;
when ”0101 ” => nex t s t a t e := ”0110 ” ;
when ”0110 ” => nex t s t a t e := ”0111 ” ;
when ”0111 ” => nex t s t a t e := ”1000 ” ;
when ”1000 ” => nex t s t a t e := ”1001 ” ;
when ”1001 ” => nex t s t a t e := ”1010 ” ;
when ”1010 ” => nex t s t a t e := ”1011 ” ;
when ”1011 ” => nex t s t a t e := ”1100 ” ;
when ”1100 ” => nex t s t a t e := ”1101 ” ;
when ”1101 ” => nex t s t a t e := ”1110 ” ;
when ”1110 ” => nex t s t a t e := ”1111 ” ;
when ”1111 ” => nex t s t a t e := ”0000 ” ;

end case ;
end i f ;
B3 <= nex t s t a t e ( 3 ) ; B2 <= nex t s t a t e ( 2 ) ;
B1 <= nex t s t a t e ( 1 ) ; B0 <= nex t s t a t e ( 0 ) ;

end process p1 ;
end architecture behav ioura l ;

Table 4: VHDL code for a 4 bit pattern generator.
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Figure 15: User defined 4 bit pattern generator symbol.

−− Fu l l adder − 1 b i t
entity f u l l a dd e r i s

port ( a , b , c in : in b i t ;
sum , cout : out b i t

) ;
end entity f u l l a dd e r ;
−−
architecture dataf low of f u l l a dd e r i s
begin

sum <= (a xor b) xor c in ;
cout <= (a and b) or ( a and c in ) or (b and c in ) ;

end architecture dataf low ;

Table 5: VHDL code for a 1 bit full adder.

VHDL model symbols may be combined with either the Qucs predefined digital
component symbols or other subcircuit symbols. In this example a VHDL model for
a simple one bit full adder is connected four times in a serial fashion to form a 4 bit
full adder. The VHDL model code for a simple one bit full adder is given in Table 5.
The associated symbol diagrams for the one bit full adder are illustrated in Fig. 16
and Fig. 17.
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Figure 16: Qucs generated VHDL symbol with subcircuit ports for one bit full adder.
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sum

cout
CI
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SUB
File=name

Figure 17: User defined one bit full symbol.

Figure 18 shows the schematic for a simple 4 bit ripple adder. The corresponding
user defined symbol for the 4 bit full adder is given in Fig. 19.
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Figure 18: 4 bit full adder schematic.

Generating VHDL code from Qucs schematic drawings

Pressing key F2 causes Qucs to simulate the design entered by the Qucs user. The input
data for a simulation is either a VHDL text file, saved from the VHDL text editor, or a
VHDL code file generated by Qucs using the information encoded on a schematic drawing.
In this section of these tutorial notes a larger design is introduced and the resulting VHDL
code and simulation results are discussed. The example chosen for this purpose is a 4 bit
by 4 bit combinational digital multiplier. Both the 4 bit pattern generator and the 4 bit
full adder outlined in the last section form part of the central core of the 4 bit multiplier
design and it’s associated testbench. Table 6 shows the multiplication product table for a
4 bit by 4 bit combinational binary multiplier. Inputs to the device are binary bits a3 a2
a1 a0 and b3 b2 b1 b0. The 4 by 4 multiplier device requires 16 and gates (to generate
the multiplier product terms), three four bit full adders (to sum the output r terms) and
two 4 bit pattern generators to test the 256 possible input states. The multiplier output
is represented in Table 6 by r7 r6 r5 r4 r3 r2 r1 and r0. The circuit schematic for the 4 bit
by 4 bit multiplier and test bench are given in Fig. 20.
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Figure 19: User defined 4 bit full adder symbol.

b3 b2 b1 b0
a3 a2 a1 a0
a0b3 a0b2 a0b1 a0b0

a1b3 a1b2 a1b1 a1b0
a2b3 a2b2 a2b1 a2b0

a3b3 a3b2 a3b1 a3b0
r7 r6 r5 r4 r3 r2 r1 r0

Table 6: Product table for a 4 bit by 4 bit combinational multiplier.

The VHDL code for this example is presented in the following listing. This listing was
generated by Qucs20. A small section of the TimeList waveform plot for the digital mul-
tiplier is shown in Fig. 21. At 1.74 micro seconds input a is ”0101”, input b is ”0111” and
the output r is ”00100011” which is 35 in decimal. Taking a few random checks of the
simulation results indicates that the 4 bit by 4 bit multiplier design works correctly. Notice
that the VHDL code generated by Qucs for the 4 bit multiplier does not contain any prop-
agation delay timing data. This could be added to the and gates, if required. However,
at this stage in the development of Qucs digital simulation passing timing data, and other
parameters, from device symbols generated from VHDL models has not been implemented
yet. The use of VHDL generics is an obvious way this could be done. Generics are allowed,

20Some readers will have noticed that the naming scheme for internal signal nets is different in the
multiplier VHDL listing when compared to the VHDL listings in the first version of these notes. Towards
the end of the 0.0.9 development phase the naming convention employed by Qucs was changed to give a
more flexible structure.
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of course, in text based VHDL simulations.
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Figure 20: A 4 bit by 4 bit combinational digital multiplier.
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−− Qucs 0 . 0 . 9
−− /mnt/hda2/ vhd l c omp l i b p r j / mu l t i p l i e r 4 b x 4 b i t . sch

entity patgen 4b i t i s
port ( RESET, CLOCK : in b i t ;

B0 , B1 , B2 , B3 : out b i t
) ;

end entity patgen 4b i t ;
−−
architecture behav ioura l of patgen 4b i t i s
begin
p1 : process (RESET, CLOCK) i s

variable pr e s en t s t a t e , n ex t s t a t e :
b i t v e c t o r (3 downto 0) := ”0000 ” ;

begin
i f (RESET = ’1 ’ ) then nex t s t a t e := ”0000 ” ;
e l s i f (CLOCK’ event and CLOCK= ’1 ’) then

p r e s e n t s t a t e := nex t s t a t e ;
case p r e s e n t s t a t e i s

when ”0000 ” => nex t s t a t e := ”0001 ” ;
when ”0001 ” => nex t s t a t e := ”0010 ” ;
when ”0010 ” => nex t s t a t e := ”0011 ” ;
when ”0011 ” => nex t s t a t e := ”0100 ” ;
when ”0100 ” => nex t s t a t e := ”0101 ” ;
when ”0101 ” => nex t s t a t e := ”0110 ” ;
when ”0110 ” => nex t s t a t e := ”0111 ” ;
when ”0111 ” => nex t s t a t e := ”1000 ” ;
when ”1000 ” => nex t s t a t e := ”1001 ” ;
when ”1001 ” => nex t s t a t e := ”1010 ” ;
when ”1010 ” => nex t s t a t e := ”1011 ” ;
when ”1011 ” => nex t s t a t e := ”1100 ” ;
when ”1100 ” => nex t s t a t e := ”1101 ” ;
when ”1101 ” => nex t s t a t e := ”1110 ” ;
when ”1110 ” => nex t s t a t e := ”1111 ” ;
when ”1111 ” => nex t s t a t e := ”0000 ” ;

end case ;
end i f ;

B3 <= nex t s t a t e ( 3 ) ; B2 <= nex t s t a t e ( 2 ) ;
B1 <= nex t s t a t e ( 1 ) ; B0 <= nex t s t a t e ( 0 ) ;

end process p1 ;
end architecture behav ioura l ;

entity Sub patgen 4bit i s
port ( net net0 : in b i t ;

net net5 : in b i t ;

46



net outne t ne t1 : out b i t ;
ne t outne t ne t3 : out b i t ;
ne t outne t ne t2 : out b i t ;
ne t outne t ne t4 : out b i t ) ;

end entity ;
use work . a l l ;
architecture Arch Sub patgen 4bit of Sub patgen 4bit i s

signal net net1 ,
net net2 ,
net net3 ,
net net4 : b i t ;

begin
net outne t ne t1 <= net net1 or ’ 0 ’ ;
ne t outne t ne t2 <= net net2 or ’ 0 ’ ;
ne t outne t ne t3 <= net net3 or ’ 0 ’ ;
ne t outne t ne t4 <= net net4 or ’ 0 ’ ;
X1 : entity patgen 4b i t port map ( net net0 , net net5 ,

net net1 , net net3 , net net2 , net net4 ) ;
end architecture ;

−− l o g i c z e r o . vhd l
entity l o g i c z e r o i s

port ( Y : out b i t
) ;

end entity l o g i c z e r o ;
−−
architecture dataf low of l o g i c z e r o i s
begin

Y <= ’0 ’ ;
end architecture dataf low ;

entity Sub l o g i c z e r o i s
port ( net outnetY : out b i t ) ;

end entity ;
use work . a l l ;
architecture Arch Sub log i c z e ro of Sub l o g i c z e r o i s

signal netY : b i t ;
begin

X1 : entity l o g i c z e r o port map ( netY ) ;
net outnetY <= netY or ’ 0 ’ ;

end architecture ;
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−− Fu l l adder − 1 b i t
entity f u l l a dd e r i s

port ( a , b , c in : in b i t ;
sum , cout : out b i t

) ;
end entity f u l l a dd e r ;
−−
architecture dataf low of f u l l a dd e r i s
begin

sum <= (a xor b) xor c in ;
cout <= (a and b) or ( a and c in ) or (b and c in ) ;

end architecture dataf low ;

entity Sub fu l l a dd e r 1b i t i s
port ( net net0 : in b i t ;

net net1 : in b i t ;
net net2 : in b i t ;
ne t outne t ne t3 : out b i t ;
ne t outne t ne t4 : out b i t ) ;

end entity ;
use work . a l l ;
architecture Arch Sub fu l l adde r 1b i t of Sub fu l l a dd e r 1b i t i s

signal net net3 ,
net net4 : b i t ;

begin
X1 : entity f u l l a dd e r port map ( net net0 , net net1 ,

net net2 , net net3 , net net4 ) ;
ne t outne t ne t3 <= net net3 or ’ 0 ’ ;
ne t outne t ne t4 <= net net4 or ’ 0 ’ ;

end architecture ;

entity Sub fu l l a dd e r 4b i t i s
port ( net net0 : in b i t ;

net net1 : in b i t ;
net net2 : in b i t ;
net net3 : in b i t ;
net net4 : in b i t ;
net net5 : in b i t ;
net net6 : in b i t ;
net net13 : in b i t ;
net net7 : in b i t ;
ne t outne t ne t8 : out b i t ;
ne t outne t ne t9 : out b i t ;
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net outnet ne t10 : out b i t ;
ne t outnet ne t11 : out b i t ;
ne t outnet ne t12 : out b i t ) ;

end entity ;
use work . a l l ;
architecture Arch Sub fu l l adde r 4b i t of Sub fu l l a dd e r 4b i t i s

signal net net14 ,
net net15 ,
net net16 ,
net net8 ,
net net9 ,
net net10 ,
net net11 ,
net net12 : b i t ;

begin
net outne t ne t8 <= net net8 or ’ 0 ’ ;
ne t outne t ne t9 <= net net9 or ’ 0 ’ ;
ne t outnet ne t10 <= net net10 or ’ 0 ’ ;
ne t outnet ne t11 <= net net11 or ’ 0 ’ ;
ne t outnet ne t12 <= net net12 or ’ 0 ’ ;
SUB4 : entity Sub fu l l a dd e r 1b i t port map ( net net3 , net net13 ,

net net14 , net net11 , net net12 ) ;
SUB3 : entity Sub fu l l a dd e r 1b i t port map ( net net2 , net net6 ,

net net15 , net net10 , net net14 ) ;
SUB2 : entity Sub fu l l a dd e r 1b i t port map ( net net1 , net net5 ,

net net16 , net net9 , net net15 ) ;
SUB1 : entity Sub fu l l a dd e r 1b i t port map ( net net0 , net net4 ,

net net7 , net net8 , net net16 ) ;
end architecture ;

entity TestBench i s
end entity ;
use work . a l l ;

architecture Arch TestBench of TestBench i s
signal netA0 , netA1 , netA2 , netA3 , netR , netB0 ,

netB1 , netB2 , netB3 , netR0 , netR1 , netR2 ,
netR3 , netR4 , netR5 , netR6 , netR7 , netCLOCK,
net net0 , net net1 , net net2 , net net3 , net net4 ,
net net5 , net net6 , net net7 , net net8 , net net9 ,
net net10 , net net11 , net net12 , net net13 , net net14 ,
net net15 , net net16 , net net17 , net net18 , net net19 ,
net net20 , net net21 , net net22 , net net23 ,
net net24 : b i t ;

begin
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SUB3 : entity Sub patgen 4bit port map ( netR , net net0 ,
netA0 , netA1 , netA2 , netA3 ) ;

SUB1 : entity Sub patgen 4bit port map ( netR , netCLOCK,
netB0 , netB1 , netB2 , netB3 ) ;

R: process
begin

netR <= ’1 ’ ; wait for 10 ns ;
netR <= ’0 ’ ; wait for 2000 ns ;

end process ;

CLOCK: process
begin

netCLOCK <= ’0 ’ ; wait for 10 ns ;
netCLOCK <= ’1 ’ ; wait for 10 ns ;

end process ;

ne t net0 <= not netB3 ;
netR0 <= netA0 and netB0 ;
net net1 <= netA0 and netB1 ;
net net2 <= netA0 and netB2 ;
net net3 <= netA0 and netB3 ;
SUB5 : entity Sub l o g i c z e r o port map ( net net4 ) ;
net net5 <= netA1 and netB0 ;
net net6 <= netA1 and netB1 ;
net net7 <= netA1 and netB2 ;
net net8 <= netA1 and netB3 ;
net net9 <= netA2 and netB0 ;
net net10 <= netA2 and netB1 ;
net net11 <= netA2 and netB2 ;
net net12 <= netA2 and netB3 ;
SUB4 : entity Sub fu l l a dd e r 4b i t port map ( net net1 , net net2 ,

net net3 , net net4 , net net5 , net net6 , net net7 ,
net net8 , net net4 , netR1 , net net13 , net net14 ,
net net15 , net net16 ) ;

SUB6 : entity Sub fu l l a dd e r 4b i t port map ( net net13 , net net14 ,
net net15 , net net16 , net net9 , net net10 , net net11 ,
net net12 , net net4 , netR2 , net net17 , net net18 ,
net net19 , net net20 ) ;

net net21 <= netA3 and netB0 ;
net net22 <= netA3 and netB1 ;
net net23 <= netA3 and netB2 ;
net net24 <= netA3 and netB3 ;
SUB7 : entity Sub fu l l a dd e r 4b i t port map ( net net17 , net net18 ,
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net net19 , net net20 , net net21 , net net22 ,
net net23 , net net24 , net net4 , netR3 , netR4 ,
netR5 , netR6 , netR7 ) ;

end architecture ;

dtime
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Figure 21: A section of the 4 bit by 4 bit combinational digital multiplier TimeList output
waveforms.

Update number two: September 2006

Update number two in this tutorial series reports on the major changes that have taken
place to Qucs digital simulation since the first update was posted on the Qucs Web site
roughly three months ago. During this period a number of significant, and very critical,
extensions have been implemented. Previous releases concentrated on establishing a funda-
mental base for digital circuit simulation using the VHDL language. The primary vehicle
for representing circuit signals being the VHDL bit and bit-vector signal types. The next
release of Qucs (version 0.0.10) and FreeHDL (version 0.0.3) extends the allowed signal
types to include IEEE std_logic_1164 nine level logic, integers, and reals. Readers will
appreciate that these changes are the result of a great deal of work by the Qucs team and
must be considered as very much work in progress because not all the features offered by
the FreeHDL implementation of the VHDL language are currently available via the Qucs
schematic capture and VHDL text file simulation routes. Although a significant amount
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of testing has taken place it is likely that software bugs will come to light as more Qucs
users try the new features - if you find a bug please report it by posting a note on the
Qucs Web site. Adding new signal types to Qucs digital simulation affects all sections of
the simulation route from schematic capture to plotting and tabulating input and output
signals. Hence, although it may seem the wrong way round, the place to first implement
the necessary changes to accommodate the new signal types is at the simulation results
reporting stages of the Qucs package. In release 0.0.10 no attempt has been made to
add the new signal types to the schematic capture part of the Qucs package.21 Recent
work on the digital sections of the Qucs package has concentrated on (1) improvements to
VHDL language entry using the Qucs colour coded VHDL text editor22, (2) modifications
to FreeHDL which allow a cleaner interface between Qucs and FreeHDL, (3) upgrades to
the data conversion of simulation results from the FreeHDL value change dump format to
the native Qucs format, and (4) major changes to the results reporting routines that are
accessed from the Qucs diagrams icon dialogue. A detailed list of the software changes and
bug fixes can be found in the Qucs and FreeHDL change log files.

Simulating VHDL code using Qucs and FreeHDL.

The flow diagram drawn in Fig. 10 shows the relationship between Qucs and FreeHDL,
and the sequence that takes place during digital circuit simulation. This flow diagram
does not however, outline the details of the stages that are performed when converting (1)
VHDL circuit code into a machine code simulation program, and (2) simulation output
results into a format that can be plotted and tabulated by Qucs. These are illustrated
in the flow diagram presented in Fig. 22. The shell script qucsdigi controls each of the
stages in this sequence. A basic understanding of the process employed by Qucs and
FreeHDL is needed if users of the software are to be able to write meaningful VHDL code
and simulate it using the two packages. VHDL code is either generated from a schematic
diagram automatically by Qucs or entered using the Qucs VHDL text editor. The use of
the schematic entry route was described in update one of these tutorial notes. However, a
number of readers will probably have spotted that included in the VHDL code generated
by Qucs are references to VHDL libraries. The VHDL language uses libraries to provide
features that are not specified in the basic language definition but are commonly used by
all language processing systems; two such libraries are STD and IEEE. When simulating
digital circuits a basic knowledge of the structure of a simulation task and how these employ
VHDL libraries is essential. This implies that users of the Qucs/FreeHDL software must
appreciate how the system compiles and simulates a VHDL circuit simulation task. Once
the VHDL simulation code has been entered via the VHDL text editor clicking the Qucs
simulation button runs shell script qucsdigi performing the sequence shown in Fig. 2223.

21Adding new signal types to Qucs schematic capture is on the to-do list.
22A number of editor bugs have been fixed and it is now possible for users to define their own colour

scheme for the various classes of VHDL reserved words and data types.
23For the FreeHDL package to operate correctly the directory where the software is installed must be

included in the shell PATH from which Qucs is launched.
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Program freeehdl-v2cc converts VHDL code into C++ functions. These are then compiled
along with a main C++ function. The next stage in the sequence links the compiled object
code with the object code from any references to items in the predefined VHDL libraries to
produce an executable digital simulation program. This is then run by Qucs outputting a
set of simulation results in value change dump (VCD) format24. Finally a program called
qucsconv converts the VCD simulation results into the Qucs native data format ready for
post processing as graphical or tabular diagrams by Qucs.

24The value change dump language was originally designed as a simulation waveform interchange
format for Verilog HDL. The specification of the VCD format can be found at http://www-
ee.eng.hawaii.edu/ msmith/ASICs/HTML/Verilog/LRM/HTML/15/ch15.2.htm
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Figure 22: Detailed flow diagram showing VHDL code compilation and simulation results
processing.
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VHDL predefined packages and libraries.

All VHDL language processing systems provide a predefined VHDL package called stan-
dard. This package defines many of the fundamental VHDL data types, for example bit,
character, integer and real. The predefined types, subtypes and other functions in the
package standard are stored in a library called STD. The FreeHDL version of library STD
includes an additional VHDL package called textio which is used to input and output signal
data from and to files. A second library called IEEE defines (1) multivalued logic signals
defined by nine different encoding values, making it possible to model digital circuits that
are composed from different technology components, (2) logic signal subtypes and (3) an
extensive range of useful functions, procedures and overloaded operators. The FreeHDL
version of the IEEE library consists of the following packages:

1. std_logic_1164

2. numeric_bit

3. math_real

4. numeric_std

5. std_logic_arith

6. std_logic_unsigned

7. vital_timing

One other library is always defined by VHDL code processing systems namely the work
library. This library holds user compiled VHDL entity/architecture design units.

VHDL simulation code structures.

In its most basic form VHDL circuit simulation code is structured as an entity-architecture
test bench which includes input signal test information.25 An example outline of the basic
format is

entity te s tbench i s
−− e n t i t y body s ta tements
end entity te s tbench ;
−−
architecture behav ioura l of te s tbench i s
−− a r c h i t e c t u r e body s ta tements
end architecture behav ioura l ;

25Test signals are often called test vectors.
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VHDL data types, functions and operators in package standard are always visible to VHDL
test bench code and reference to their use need not be added explicitly. However, if the
test bench entity-architecture uses data types or other items defined in other libraries,
for example the std_logic type in the IEEE library, then reference to them needs to be
added before each entity-architecture pair where they are used. Libraries are referenced
using the VHDL library and use statements. An example showing how these statements
are employed is outlined in the following VHDL code segment:

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
−−
entity te s tbench i s
−− e n t i t y body s ta tements
end entity te s tbench ;
−−
architecture behav ioura l of te s tbench i s
−− a r c h i t e c t u r e body s ta tements
end architecture behav ioura l ;

Here the VHDL code word all signifies that all items in a specific library are to be made
available for use in the following entity/architecture pair; testbench in the above example.
If more than one library is to be used then a library/use statement is needed for each
library reference. Most complete VHDL circuit simulation programs consist of more than
one entity/architecture pair. In such cases the circuit test bench, with its signal test vectors,
must be the last entry in the program. An example of a more complex VHDL program
structure is

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
−−
entity comp1 i s
−− e n t i t y body s ta tements
end entity comp1 ;
−−
architecture behav ioura l of comp1 i s
−− a r c h i t e c t u r e body s ta tements
end architecture behav ioura l ;
−−
l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
−−
entity comp2 i s
−− e n t i t y body s ta tements
end entity comp2 ;
−−
architecture behav ioura l of comp2 i s
−− a r c h i t e c t u r e body s ta tements
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end architecture behav ioura l ;

−−
l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
−−
use work . a l l ;
−−
entity te s tbench i s
−− e n t i t y body s ta tements
end entity te s tbench ;
−−
architecture behav ioura l of te s tbench i s
−− a r c h i t e c t u r e body s ta tements
end architecture behav ioura l ;

During the conversion of VHDL code to a machine code simulation program each entity/ar-
chitecture pair, prior to the final test bench entry, is compiled as a separate design unit and
stored in the work library26. Compiled design units held in the work library can be refer-
enced in other entity/architecture models provided the VHDL statement use work.all;27 is
inserted in the VHDL simulation code prior to each entity/architecture statement where
they are referenced.

26The testbench entity/architecture pair is also, of course, compiled but this design unit is the one that
is run as the executable simulation program.

27References to individual items are also allowed by inserting, for example, use.work.comb1;
use.work.comb2; in the VHDL code.
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VHDL data types.

VHDL data
    types

Scalar

Integer  Real  Enumerated Physical

File Access Composite

Array  Record

Figure 23: VHDL data types

The chart shown in Fig. 23 indicates the different data types that are available in the VHDL
language. FreeHDL implements all these data types. In practical circuit simulation the
different VHDL data types are normally used to specify (1) signals, (2) variables and (3)
constants28. During simulation Qucs/FreeHDL automatically stores the values of integer,
real and enumerated bit signals as simulation time progresses. Furthermore, bit_vector
and IEEE signal types including std_logic_vector are also stored. Signals of these types
are then available for plotting and tabulation using the Timing, Truth table, Tabular and
Cartesian output diagrams. Selected elements in user defined composite signals, those
that are stored in arrays for example29, can be assigned to the basic signal types then dis-
played.30. An example of how this is done is given in later sections of these update tutorial
notes. Note - the values of variables and constants are not recorded during simulation.

An example VHDL simulation employing integer signals.

The following VHDL code demonstrates how the integer data type can be used to represent
signals. In this example signals A, B change state on the rising edge of clock clk. The

28Type file is of course different in that it is used to store either test vectors, component data such as
ROM contents and output simulation results.

29Please note that signal types based on the composite type record will probably cause the Qucs simu-
lation cycle to fail - work on this data type has been added to the to-do list.

30Qucs/FreeHDL also automatically collects waveform data for composite signals based on arrays of bit
and IEEE signal types. However, in the case of large arrays care is needed when plotting or tabulating
these directly because the entire contents of an array is output each time a signal is displayed.
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code tests the addition of integer signals and constants using arithmetic operators defined
in library STD.31 The results from this simulation are shown in Fig. 24.

−− A very ba s i c t e s t o f data type i n t e g e r .
entity te s tbench i s
end entity te s tbench ;
−−
architecture behav ioura l of te s tbench i s
signal A, B, C : i n t e g e r := 0 ;
signal c l k : b i t ;
begin
p0 : process i s −− Generate c l o c k s i g n a l .

begin
c l k <= ’0 ’ ; wait for 10 ns ;
c l k <= ’1 ’ ; wait for 10 ns ;

end process p0 ;
−−
p1 : process ( c l k ) i s

begin
i f ( c lk ’ event and c l k = ’1 ’) then

A <= A + 1 ;
B <= B + 2 ;

end i f ;
end process p1 ;

C <= A + B ;
end architecture behav ioura l ;

dtime

clk.X
a.R
b.R
c.R

0 10n 20n 30n 40n 50n 60n 70n 80n 90n 100n

0 1 1 2 2 3 3 4 4 5
0 2 2 4 4 6 6 8 8 10
0 3 3 6 6 9 9 12 12 15

Figure 24: Output results for a simple test bench example employing integer signals.

Multivalued logic.

Although signal types bit and bit-vector are widely employed when simulating digital sys-
tems one of their great weaknesses is the fact that it is difficult to represent signal bus
systems simply using only logic ’0’ and logic ’1’ signal encoding. Moreover, circuits where
bus signal contention occurs often result in simulation failure. The IEEE std_logic_1164

31The specification for the FreeHDL library STD can be found in text file freehdl-
0.0.3/std/standard.vhdl.
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package overcomes this limitation through the introduction of a multivalued logic system
which defines nine different logic values to represent signal types and signal strengths. Not
only is the bus contention problem solved through logic resolving functions but the mul-
tivalued logic system allows devices constructed from different manufacturing technologies
to be simulated at the same time, ensuring that the simulation process mirrors real circuit
design practices. The next two simulation examples introduce the nine value logic system
and demonstrate it’s use in the design of digital bus systems. Signals of type real are also
introduced to show their representation by Qucs. Listed below is the VHDL code for a
basic simulation which generates a set of IEEE std_logic, integer and real signals. Fig-
ure 25 illustrates how the Qucs Timing diagram displays different signal types. A section
of tabulated results are also given in Fig. 26.

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
−−
entity te s tbench i s
end entity te s tbench ;
−−
architecture behav ioura l of te s tbench i s
signal c l k : b i t ;
signal bv1 : b i t v e c t o r (8 downto 0 ) ;
signal s t d l 1 : s t d l o g i c v e c t o r (8 downto 0 ) ;
signal INT1 : i n t e g e r := 0 ;
signal INT2 : i n t e g e r := 99 ;
signal R1 : r e a l := 0 . 3 3 ;
signal R2 : r e a l := 9 9 . 0 ;
signal R3 : r e a l := 0 . 0 ;
signal R4 : r e a l := 0 . 0 ;
begin
p0 : process i s

begin
c l k <= ’0 ’ ; wait for 10 ns ;
c l k <= ’1 ’ ; wait for 10 ns ;

end process p0 ;
−−
p1 : process ( c l k ) i s

variable v1 : i n t e g e r := 0 ;
begin

i f ( c lk ’ event and c l k = ’1 ’ ) then
v1 := v1+1;
case v1 i s

when 1 => bv1 <= ”000000000 ” ; s t d l 1 <= ”000000000 ” ;
when 2 => bv1 <= ”000000001 ” ; s t d l 1 <= ”000000001 ” ;
when 3 => bv1 <= ”000000011 ” ; s t d l 1 <= ”00000001X” ;
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when 4 => bv1 <= ”000000111 ” ; s t d l 1 <= ”0000001XZ” ;
when 5 => bv1 <= ”000001111 ” ; s t d l 1 <= ”000001XZU” ;
when 6 => bv1 <= ”000011111 ” ; s t d l 1 <= ”00001XZUW” ;
when 7 => bv1 <= ”000111111 ” ; s t d l 1 <= ”0001XZUWL” ;
when 8 => bv1 <= ”001111111 ” ; s t d l 1 <= ”001XZUWLH” ;
when 9 => bv1 <= ”111111111 ” ; s t d l 1 <= ”01XZUWLH−” ;
when others => v1 := 0 ;

end case ;
end i f ;

end process p1 ;
p3 : process ( c l k ) i s

begin
i f ( c lk ’ event and c l k = ’1 ’) then

INT1 <= INT1 + 1 ;
INT2 <= INT2 −20;

end i f ;
−−

i f ( INT1 >= 9) then
INT1 <= 0 ;
INT2 <= 99 ;

end i f ;
end process p3 ;

−−
p4 : process ( c l k ) i s

Variable V2 : r e a l ;
begin

i f ( c lk ’ event and c l k = ’1 ’) then
R1 <= R1 + 1 . 0 ;
R2 <= R2 −20.0;
R3 <= R1∗R2 ;
R4 <= R2/(R1+0.0001) ;

end i f ;
−−

i f (R1 >= 20 .0 ) then
R1 <= 0 . 0 ;
R2 <= 99 . 0 ;

end i f ;
end process p4 ;

end architecture behav ioura l ;
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dtime

clk.X
r1.R
r2.R
r3.R
r4.R
stdl1.X
int1.R
int2.R
bv1.X

0 10n 20n 30n 40n 50n 60n 70n

0.33 1.33 1.33 2.33 2.33 3.33 3.33 4.33
99 79 79 59 59 39 39 19
0 32.67 32.67 105.07 105.07 137.47 137.47 129.87
0 299.909 299.909 59.394 59.394 25.3208 25.3208 11.7114
XXXXXXXXX 000000000 000000000 000000001 000000001 00000001X 00000001X 0000001XZ
0 1 1 2 2 3 3 4
99 79 79 59 59 39 39 19
000000000 000000000 000000000 000000001 000000001 000000011 000000011 000000111

dtime

clk.X
r1.R
r2.R
r3.R
r4.R
stdl1.X
int1.R
int2.R
bv1.X

70n 80n 90n 100n 110n 120n 130n 140n

4.33 4.33 5.33 5.33 6.33 6.33 7.33 7.33
19 19 1 1 21 21 41 41
129.87 129.87 82.27 82.27 5.33 5.33 132.93 132.93
11.7114 11.7114 4.38789 4.38789 0.187614 0.187614 3.31748 3.31748
0000001XZ 0000001XZ 000001XZX 000001XZX 00001XZX0 00001XZX0 0001XZX00 0001XZX00
4 4 5 5 6 6 7 7
19 19 1 1 21 21 41 41
000000111 000000111 000001111 000001111 000011111 000011111 000111111 000111111

Figure 25: Output results illustrating the TimeList representation of signals.

The VCD waveform interchange standard encodes digital signals as four different logic
levels. These are ’0’, ’1’, ’Z’ (high impedance) and ’X’ (unknown). Table 7 lists how the
nine ieee.std_logic signal levels are represented using the VCD format. Until the VCD
standard is revised the Qucs/FreeHDL package is restricted to displaying simulation output
data using the basic ’0’, ’1’, ’Z’ and ’X’ signal encoding. The next example shows how the
IEEE std_logic signal type can be used to simulate bus logic. The demonstration has
been kept simple in order to keep the VHDL code short. The code fragment simulates
two tri-state buffers which pass their outputs to bus drivers who’s outputs connect on a
common signal bus. The bus drivers ensure that the outputs from the tri-state buffers are
kept separate before combining onto the common bus line. This allows the output signals
from the tri-state buffers and the combined signal to be plotted separately. The resulting
waveforms clearly show the std_logic resolution function in operation, see Fig. 27 . Note
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VHDL signal levels VCD
’0’ Forcing logic 0 ’0’
’1’ Forcing logic 1 ’1’
’X’ Forcing unknown ’X’
’Z’ High impedance ’Z’
’U’ Uninitialised ’X’
’W’ Weak unknown ’0’
’L’ Weak logic 0 ’0’
’H” Weak logic 1 ’1’
’-’ Don’t care ’X’

Table 7: IEEE multivalue logic and VCD representation.

the effect of the 7 ns delay on the plotted waveforms and the use of the VHDL generic
statement to set the invert device delay value.

−− Demonstration o f a s imple bus s t r u c t u r e us ing
−− the IEEE s t d l o g i c data type .
l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
−−
entity buf i s

generic ( de lay : time := 0 ns ) ;
port ( in1 , c on t r o l : in s t d l o g i c ;

out1 : out s t d l o g i c
) ;

end entity buf ;
architecture behav ioura l of buf i s
begin
p0 : process ( in1 , c on t r o l ) i s

begin
i f ( c on t r o l = ’1 ’ ) then out1 <= in1 after delay ;
else out1 <= ’Z ’ ;

end i f ;
end process p0 ;

end architecture behav ioura l ;
−−
l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
−−
entity i n v e r t i s

generic ( de lay : time := 0 ns ) ;
port ( in1 : in s t d l o g i c ;
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out1 : out s t d l o g i c
) ;

end entity i n v e r t ;
−−
architecture behav ioura l of i n v e r t i s
begin

out1 <= not in1 after delay ;
end architecture behav ioura l ;
−−
l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
−−

entity buf2 i s
port ( in1 : in s t d l o g i c ;

out1 : out s t d l o g i c
) ;

end entity buf2 ;
−−
architecture dataf low of buf2 i s
begin

out1 <= in1 ;
end architecture dataf low ;
−−
l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
−−
use work . a l l ;
−−
entity te s tbench i s
end entity te s tbench ;
−−
architecture s t r u c t u r a l of te s tbench i s
signal data in 1 , da ta in 2 : s t d l o g i c ;
signal data out 1 , data out 2 : s t d l o g i c ;
signal data cont ro l , c on t r o l bu f 1 : s t d l o g i c ;
signal r e s u l t : s t d l o g i c ;
−−
begin
p0 : process i s

begin
data in 1 <= ’0 ’ ; wait for 5 ns ;
da ta in 1 <= ’1 ’ ; wait for 5 ns ;

end process p0 ;
−−
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data in 2 <= not data in 1 ;
−−
p1 : process i s

begin
da ta con t ro l <= ’1 ’ ; wait for 40 ns ;
da ta con t ro l <= ’0 ’ ; wait for 40 ns ;

end process p1 ;
−−
c1g1 : entity buf port map( in1 => data in 1 , c on t r o l => data cont ro l ,

out1 => data out 1 ) ;
c1g2 : entity i n v e r t generic map ( de lay => 7 ns )

port map( in1 => data cont ro l , out1 => con t r o l bu f 1 ) ;
c1g3 : entity buf port map( in1 => data in 2 , c on t r o l => cont ro l bu f1 ,

out1 => data out 2 ) ;
c1g4 : entity buf2 port map( in1 => data out 1 , out1 => r e s u l t ) ;
c1g5 : entity buf2 port map( in1 => data out 2 , out1 => r e s u l t ) ;
−−
end architecture s t r u c t u r a l ;
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0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1
1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0

clk.X

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

int1.R

0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
0
1
1

int2.R

99
79
79
59
59
39
39
19
19
1
1
21
21
41
41
61
61
81
99
79
79

r1.R

0.33
1.33
1.33
2.33
2.33
3.33
3.33
4.33
4.33
5.33
5.33
6.33
6.33
7.33
7.33
8.33
8.33
9.33
9.33
10.33
10.33

r2.R

99
79
79
59
59
39
39
19
19
1
1
21
21
41
41
61
61
81
81
101
101

r3.R

0
32.67
32.67
105.07
105.07
137.47
137.47
129.87
129.87
82.27
82.27
5.33
5.33
132.93
132.93
300.53
300.53
508.13
508.13
755.73
755.73

r4.R

0
299.909
299.909
59.394
59.394
25.3208
25.3208
11.7114
11.7114
4.38789
4.38789
0.187614
0.187614
3.31748
3.31748
5.59338
5.59338
7.32284
7.32284
8.68158
8.68158

bv1.X

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

stdl1.X

X X X X X X X X X
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 X
0 0 0 0 0 0 0 1 X
0 0 0 0 0 0 1 X Z
0 0 0 0 0 0 1 X Z
0 0 0 0 0 1 X Z X
0 0 0 0 0 1 X Z X
0 0 0 0 1 X Z X 0
0 0 0 0 1 X Z X 0
0 0 0 1 X Z X 0 0
0 0 0 1 X Z X 0 0
0 0 1 X Z X 0 0 1
0 0 1 X Z X 0 0 1
0 1 X Z X 0 0 1 X
0 1 X Z X 0 0 1 X
0 1 X Z X 0 0 1 X
0 1 X Z X 0 0 1 X

dtime

0
1e-8
2e-8
3e-8
4e-8
5e-8
6e-8
7e-8
8e-8
9e-8
1e-7
1.1e-7
1.2e-7
1.3e-7
1.4e-7
1.5e-7
1.6e-7
1.7e-7
1.8e-7
1.9e-7

clk.X

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

int1.R

0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
0
1

int2.R

99
79
79
59
59
39
39
19
19
-1
-1
-21
-21
-41
-41
-61
-61
-81
99
79

r1.R

0.33
1.33
1.33
2.33
2.33
3.33
3.33
4.33
4.33
5.33
5.33
6.33
6.33
7.33
7.33
8.33
8.33
9.33
9.33
10.3

r2.R

99
79
79
59
59
39
39
19
19
-1
-1
-21
-21
-41
-41
-61
-61
-81
-81
-101

r3.R

0
32.7
32.7
105
105
137
137
130
130
82.3
82.3
-5.33
-5.33
-133
-133
-301
-301
-508
-508
-756

r4.R

0
300
300
59.4
59.4
25.3
25.3
11.7
11.7
4.39
4.39
-0.188
-0.188
-3.32
-3.32
-5.59
-5.59
-7.32
-7.32
-8.68

bv1.X

000000000
000000000
000000000
000000001
000000001
000000011
000000011
000000111
000000111
000001111
000001111
000011111
000011111
000111111
000111111
001111111
001111111
111111111
111111111
111111111

stdl1.X

XXXXXXXXX
000000000
000000000
000000001
000000001
00000001X
00000001X
0000001XZ
0000001XZ
000001XZX
000001XZX
00001XZX0
00001XZX0
0001XZX00
0001XZX00
001XZX001
001XZX001
01XZX001X
01XZX001X
01XZX001X

Figure 26: Output results illustrating tabular representation of signals.
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dtime

data_in_1.X
data_in_2.X
data_out_1.X
data_out_2.X
data_control.X
control_buf1.X
result.X

0 5n 7n 10n 15n 20n 25n 30n 35n 40n 45n 47n 50n 55n 60n 65n 70n 75n 80n

Z Z Z Z Z Z Z Z Z
Z Z Z Z Z Z Z Z Z Z Z

X X
Z Z

dtime

data_in_1.X
data_in_2.X
data_out_1.X
data_out_2.X
data_control.X
control_buf1.X
result.X

80n 85n 87n 90n 95n 100n 105n 110n 115n 120n 125n 127n 130n 135n 140n 145n 150n 155n

Z Z Z Z Z Z Z Z Z
Z Z Z Z Z Z Z Z Z

Z Z Z

Figure 27: Signal waveforms for the simple bus example.

Run debugging of VHDL simulation code.

The VHDL language has a number of built in features that allow the debugging of VHDL
code at simulation time. In this section the VHDL reserved words assert, report and
severity are introduced and their use as code debugging aids explained by way of a more
detailed design example. In the previous digital tutorial update a structural design of a
4 bit digital multiplier was introduced as an example that employed the Qucs schematic
capture digital simulation route. The next example extends the previous multiplier design
to 16 bits. However, at a structural level the larger multiplier becomes very detailed and
it’s design can be prone to error. To demonstrate the power of VHDL the 16 bit multiplier
has been redesigned at a functional level. A block diagram of the multiplier simulation test
bench is given in Fig. 28: firstly a clock strobes a data generator unit which generates a
sequence of integer numbers. These are converted to 16 bit_vectors and applied to the 16
bit multiplier unit as inputs x and y; secondly the 16-bit multiplier on sensing a change in
inputs x or y converts these signals from 16 bit_vectors to integers, multiples them and
finally converts the integer result to 32 bit_vector output Res_bit. Although standard
library STD defines arithmetic operations for integers it does not provide functions for
the conversion of integers to bit_vectors or the reverse operation. The following VHDL
listing gives the complete simulation test bench program for the 16 bit multiplier including
the required data conversion functions. VHDL debug or message reporting code using
the reserved words assert, report and severity have been added to the data_generator
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and functional_multiplier architecture code. During simulation these text strings, and
the simulation time when they were actioned, are written to the Qucs log.txt file, giving
a trace record of the simulation activity. In cases where an error occurs at severity level
failure the simulation will terminate. FreeHDL allows VHDL report statements without an
accompanying assert statement.32 A typical Timing diagram plot for this design is shown
in Fig. 29

CLOCK

CLK

Data
generator

16 bit
functional
multiplier

X

Y
16

16

Res_bit

32

X => bit_vector(15 downto 0)

Y => bit_vector(15 downto 0)

Res_bit => bit_vector(31 downto 0)

Figure 28: Block diagram of a 16 bit functional multiplier.

−− 16 b i t d i g i t a l mu l t i p l i e r example .
−− Simulat ion t race us ing as se r t , r epor t and s e v e r i t y s ta tements .
−−
entity c l o ck i s

port ( c l k : out b i t ) ;
end entity c l o ck ;
−−
architecture behav ioura l of c l o ck i s
begin
p0 : process i s

begin
c l k <= ’0 ’ ; wait for 10 ns ;
c l k <= ’1 ’ ; wait for 10 ns ;

end process p0 ;

32One of the changes at the 1993 revision of the IEEE VHDL 1076-1987 standard was to allow report
statements without the previous mandatory assert clause. FreeHDL attempts to comply with the 1993
revision.
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end architecture behav ioura l ;
−−
entity data genera to r i s

port ( c l k : in b i t ;
x , y : out b i t v e c t o r (15 downto 0)

) ;
end entity data genera to r ;
−−
architecture behav ioura l of data genera to r i s
type mem array 16 i s array (1 to 8) of i n t e g e r ;
signal count : i n t e g e r := 0 ;
−−
function i n t e g e r t o v e c t o r 1 6 ( in t no : i n t e g e r ) return b i t v e c t o r i s
variable ni : i n t e g e r ;
variable r e tu rn va lue : b i t v e c t o r (15 downto 0 ) ;
begin

assert ( n i < 0)
report ”Function i n t e g e r t o v e c t o r 3 2 : i n t e g e r number must be >= 0”
severity f a i l u r e ;

n i := int no ;
for i in r e turn va lue ’ Reverse Range loop

i f ( ( n i mod 2 ) =1 ) then r e tu rn va lue ( i ) := ’ 1 ’ ;
else r e tu rn va lue ( i ) := ’ 0 ’ ;
end i f ;
n i := ni /2 ;

end loop ;
return r e tu rn va lue ;

end i n t e g e r t o v e c t o r 1 6 ;
−−
begin
p1 : process ( c l k ) i s

variable x i : mem array 16 := (1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ) ;
variable y i : mem array 16 := (2 , 4 , 6 , 8 , 10 , 12 , 14 , 1 6 ) ;
variable xh , yh : i n t e g e r ;
variable count i : i n t e g e r ;

begin

count i := count+1;
i f ( count i > 8 ) then

count i := 1 ;
end i f ;

xh := x i ( count i ) ;
yh := y i ( count i ) ;
x <= in t e g e r t o v e c t o r 1 6 (xh ) ;
y <= in t e g e r t o v e c t o r 1 6 (yh ) ;
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count <= count i ;
report ”In proce s s p1 . data genera to r . ” ;

end process p1 ;
end architecture behav ioura l ;
−−
−−
entity f u n c t i o n a l mu l t i p l i e r i s

port ( x , y : in b i t v e c t o r (15 downto 0 ) ;
r e s b i t : out b i t v e c t o r (31 downto 0)

) ;
end entity f u n c t i o n a l mu l t i p l i e r ;
−−
−−
architecture behav ioura l of f u n c t i o n a l mu l t i p l i e r i s
−−
function v e c t o r t o i n t e g e r ( v1 : b i t v e c t o r ) return i n t e g e r i s
variable r e tu rn va lue : i n t e g e r :=0;
a l ias v2 : b i t v e c t o r ( v1 ’ length−1 downto 0) i s v1 ;
begin

for i in v2 ’ high downto 1 loop
i f ( v2 ( i ) = ’1 ’ ) then

r e tu rn va lue := ( r e tu rn va lue +1)∗2;
else

r e tu rn va lue := re tu rn va lue ∗2 ;
end i f ;

end loop ;
i f v2 (0 ) = ’1 ’ then r e tu rn va lue := re tu rn va lue +1;
end i f ;

return r e tu rn va lue ;
end v e c t o r t o i n t e g e r ;
−−
function i n t e g e r t o v e c t o r 3 2 ( in t no : i n t e g e r ) return b i t v e c t o r i s
variable ni : i n t e g e r ;
variable value : b i t v e c t o r (31 downto 0 ) ;
begin

assert ( n i < 0)
report ”Function i n t e g e r t o v e c t o r 3 2 : i n t e g e r number must be >= 0”
severity f a i l u r e ;

n i := int no ;
for i in 0 to 31 loop

i f ( ( n i mod 2 ) =1 ) then value ( i ) := ’ 1 ’ ;
else value ( i ) := ’ 0 ’ ;
end i f ;
i f ni > 0 then ni := ni /2 ;
else ni := ( ni −1)/2;
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end i f ;
end loop ;
return value ;

end i n t e g e r t o v e c t o r 3 2 ;
−−
begin
p0 : process (x , y ) i s

variable xi , yi , prod mult : i n t e g e r ;
begin

x i := v e c t o r t o i n t e g e r ( x ) ;
y i := v e c t o r t o i n t e g e r ( y ) ;
prod mult := x i ∗ y i ;
r e s b i t <= in t e g e r t o v e c t o r 3 2 ( prod mult ) ;

report ”In proce s s p1 . f u n c t i o n a l mu l t i p l i e r ” ;
end process p0 ;

end architecture behav ioura l ;
−−
entity t e s t 2 vhd l 1 i s
end entity t e s t 2 vhd l 1 ;
−−
architecture behav ioura l of t e s t 2 vhd l 1 i s
signal c l k : b i t ;
signal x , y : b i t v e c t o r (15 downto 0 ) ;
signal r e s b i t : b i t v e c t o r (31 downto 0 ) ;
−−
begin
d1 : entity work . c l o ck port map ( c l k ) ;
d2 : entity work . data genera to r port map( c lk , x , y ) ;
d3 : entity work . f u n c t i o n a l mu l t i p l i e r port map ( x , y , r e s b i t ) ;

end architecture behav ioura l ;
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dtime

clk.X
res_bit.X
x.X
y.X

10n 20n 30n

00000000000000000000000000001000 00000000000000000000000000010010
0000000000000010 0000000000000011
0000000000000100 0000000000000110

dtime

clk.X
res_bit.X
x.X
y.X

20n 30n 40n

00000000000000000000000000010010 00000000000000000000000000100000
0000000000000011 0000000000000100
0000000000000110 0000000000001000

dtime

clk.X
res_bit.X
x.X
y.X

40n 50n 60n

00000000000000000000000000110010 00000000000000000000000001001000
0000000000000101 0000000000000110
0000000000001010 0000000000001100

dtime

clk.X
res_bit.X
x.X
y.X

60n 70n 80n

00000000000000000000000001100010 00000000000000000000000010000000
0000000000000111 0000000000001000
0000000000001110 0000000000010000

Figure 29: Typical timing diagram for the 16 bit functional multiplier.

More advanced output debug messages, and results tables, can be written to Qucs message
file log.txt by using the predefined data handling routines in STD library package textio33.
This package contains functions for reading and writing STD data types from and to files34.
The next segment of VHDL code illustrates how a simple table of results can be written
to file log.txt. The results table is shown in Table 8.

−− Test t e x t i o package .
−−
l ibrary STD;
use STD. t e x t i o . a l l ;
−−
entity Qucs wr i t e t e s t i s
end entity Qucs wr i t e t e s t ;
−−

33The specification for the FreeHDL package textio can be found in text file freehdl-0.0.3/std/textio.vhdl.
34VHDL allows data to be read from and written to the standard input and output streams as well as

user defined files. At this time only writing data to file log.txt and reading data from user defined data
files has been tested. Please note that the use of the textio package is very much a cutting edge feature of
the Qucs/FreeHDL software and is probably not bug free.
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architecture behav ioura l of Qucs wr i t e t e s t i s
begin
wr i t e t e s t : process i s

variable i npu t l i n e , ou tpu t l i n e : l i n e ;
variable i n t1 : i n t e g e r := 10 ;

begin
wr i t e ( output l ine , s t r i ng ’ ( ” ” ) ) ;
w r i t e l i n e ( output , ou tpu t l i n e ) ;
wr i t e ( output l ine , s t r i ng ’ ( ”St r ing −> l og . txt ” ) ) ;
w r i t e l i n e ( output , ou tpu t l i n e ) ;

−−
t e s t L1 : for i c in 1 to 5 loop

i n t1 := in t1 + 1 ;
wr i t e ( output l ine , s t r i ng ’ ( ” in t1 = ” ) ) ;
wr i t e ( output l ine , i n t1 ) ;
wr i t e ( output l ine , s t r i ng ’ ( ” in t1 ˆ2 = ” ) ) ;
wr i t e ( output l ine , i n t1 ∗ i n t1 ) ;
w r i t e l i n e ( output , ou tpu t l i n e ) ;

end loop t e s t L1 ;
report ”Fin i shed t e s t f o r loop . ” ;

end process wr i t e t e s t ;
end architecture behav ioura l ;
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Output:

----------

Starting new simulation on Thu 24. Aug 2006 at 13:10:56

running C++ conversion... done.

compiling functions... done.

compiling main... done.

linking... done.

simulating...

Output to STD output -> log.txt

int1 = 11 int1^2 = 121

int1 = 12 int1^2 = 144

int1 = 13 int1^2 = 169

int1 = 14 int1^2 = 196

int1 = 15 int1^2 = 225

0 fs + 0d: NOTE: Finished test for loop.

running VCD conversion... done.

Simulation ended on Thu 24. Aug 2006 at 13:10:57

Ready.

Errors:

--------

Table 8: Log.txt file showing tabular output results.
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Testing digital systems using test vectors stored on disk.

In an attempt on my part to review all the new features introduced in the previous sections
of this update the final example demonstrates how test vectors stored on disk, as a text
file, can be read by the simulation program at the start of a simulation, then applied to the
inputs of the digital system under test. The code for this example is given in the following
listing:

−− Test ing d i g i t a l c i r c u i t s us ing t e s t v e c t o r s
−− s t o r ed as a t e x t f i l e on d i s k .
−−
entity comb1 i s

port ( a , b , c , d : in b i t ;
y : out b i t

) ;
end entity comb1 ;
−−
architecture dataf low of comb1 i s
begin

y <= (a nand b) or ( c and d ) ;
end architecture dataf low ;
−−
l ibrary STD;
use STD. t e x t i o . a l l ;
−−
entity te s tbench i s
end entity te s tbench ;
−−
architecture behav ioura l of te s tbench i s
signal c l o ck : b i t ;
signal v1 , v2 , v3 , v4 , y out : b i t ;
type a r r a y l i s t i s array (1 to 20) of b i t ;
signal v1sd , v2sd , v3sd , v4sd : a r r a y l i s t ;
−−
Procedure s t o r e da ta ( variable number : out i n t e g e r ) i s
variable d1 , d2 , d3 , d4 : b i t ;
variable i n l i n e , o u t l i n e : l i n e ;
variable i : i n t e g e r ;
variable my str ing : s t r i n g (1 to 20) := cr & ”Constrained s t r i n g ” & cr ;
f i l e i n f i l e : t ex t open read mode i s ”/mnt/hda2/qucs −0.0 .10 f / t e s t 1 da ta ” ;

begin
report my str ing ;
i := 1 ;
while not ( e n d f i l e ( i n f i l e ) ) loop

r e ad l i n e ( i n f i l e , i n l i n e ) ;
read ( i n l i n e , d4 ) ;
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read ( i n l i n e , d3 ) ;
read ( i n l i n e , d2 ) ;
read ( i n l i n e , d1 ) ;
v1sd ( i ) <= d1 ;
v2sd ( i ) <= d2 ;
v3sd ( i ) <= d3 ;
v4sd ( i ) <= d4 ;
report ”In f i l e read loop . ” ;
i := i +1;
i f ( i > 20) then exit ;
end i f ;
number:= i ;

end loop ;
end procedure s t o r e da ta ;
−−
begin
p0 : process i s −− Generate a c l o c k s i g n a l .

begin
c l o ck <= ’1 ’ ; wait for 10 ns ;
c l o ck <= ’0 ’ ; wait for 10 ns ;

end process p0 ;
−−
g0 : entity work . comb1 port map ( v1 , v2 , v3 , v4 , y out ) ;
−−
p1 : process i s −− Read t e s t v e c t o r s from d i s k and
−− app ly data to c i r c u i t inpu t s .

variable no reads : i n t e g e r ;
variable i n l i n e , o u t l i n e : l i n e ;

begin
s t o r e da ta ( no reads ) ;
wr i t e ( ou t l i n e , s t r i ng ’ ( ”count = ”) ) ;
wr i t e ( ou t l i n e , no reads −1);
w r i t e l i n e ( output , o u t l i n e ) ;

−−
for k in 1 to no reads−1 loop −− Count up .

wait until ( c lock ’ event and c l o ck = ’1 ’ ) ;
v1 <= v1sd (k ) ;
v2 <= v2sd (k ) ;
v3 <= v3sd (k ) ;
v4 <= v4sd (k ) ;
wr i t e ( ou t l i n e , s t r i ng ’ ( ”Time = ”) , l e f t , 8 ) ;
wr i t e ( ou t l i n e , now , r ight , 1 0 ) ;
wr i t e ( ou t l i n e , s t r i ng ’ ( ” Test v e c to r s −> ”) , r i ght , 20 ) ;
wr i t e ( ou t l i n e , v4 , l e f t , 2 ) ;
wr i t e ( ou t l i n e , v3 , l e f t , 2 ) ;
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wr i t e ( ou t l i n e , v2 , l e f t , 2 ) ;
wr i t e ( ou t l i n e , v1 , l e f t , 2 ) ;
wr i t e ( ou t l i n e , s t r i ng ’ ( ”k = ”) , r i ght , 10 ) ;
wr i t e ( ou t l i n e , k ) ;
w r i t e l i n e ( output , o u t l i n e ) ;
wait until ( c lock ’ event and c l o ck = ’0 ’ ) ;

end loop ;
−−

for k in no reads−1 downto 1 loop −− Count down .
wait until ( c lock ’ event and c l o ck = ’1 ’ ) ;
v1 <= v1sd (k ) ;
v2 <= v2sd (k ) ;
v3 <= v3sd (k ) ;
v4 <= v4sd (k ) ;
wr i t e ( ou t l i n e , s t r i ng ’ ( ”Time = ”) , l e f t , 8 ) ;
wr i t e ( ou t l i n e , now , r ight , 1 0 ) ;
wr i t e ( ou t l i n e , s t r i ng ’ ( ” Test v e c to r s −> ”) , r i ght , 20 ) ;
wr i t e ( ou t l i n e , v4 , l e f t , 2 ) ;
wr i t e ( ou t l i n e , v3 , l e f t , 2 ) ;
wr i t e ( ou t l i n e , v2 , l e f t , 2 ) ;
wr i t e ( ou t l i n e , v1 , l e f t , 2 ) ;
wr i t e ( ou t l i n e , s t r i ng ’ ( ”k = ”) , r i ght , 10 ) ;
wr i t e ( ou t l i n e , k ) ;
w r i t e l i n e ( output , o u t l i n e ) ;
wait until ( c lock ’ event and c l o ck = ’0 ’ ) ;

end loop ;
wait ;

end process p1 ;
end architecture behav ioura l ;

Although the listing above is relatively short, careful study of it’s contents should allow
readers to identify many of the new Qucs/FreeHDL features introduced earlier. Moreover
in some sections, the code illustrates extra features which will be familiar to those Quc-
s/FreeHDL users who have a more advanced knowledge of the VHDL language. These are
listed below with a number of general points:

• The VHDL code simulates the performance of a simple combinational logic circuit
called comb1: this has four inputs (a, b, c, d) of type bit and one output (y) of type
bit35.

• The testbench being simulated consists of two processes: process p0 generates a clock
signal with a period of 20 ns; process p1 inputs test data held in file test1_data 36

and stores it in four signal arrays (v1sd, v2sd, v3sd and v4sd), applying this data

35Type bit was chosen for this example rather than one of the IEEE signal types because package textio
does not handle the IEEE multivalue logic types.

36I use the Knoppix version of the Linux/GNU operating system for all work on the Qucs project. The
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to the inputs of the circuit under test at the leading edges of the clock pulse. Note
process p1 only executes once due to the wait statement at its end.

• An instantiation of the comb1 component is included in the testbench architecture.
Note the use of the VHDL entity work.comb1 construction, this is an alternative for
use work.all ;

• The test vector data held in file test_data is read by procedure store_data which
returns the number of lines of data read in variable number. File handling, including
reading data from disk, is undertaken with predefined routines in package textio.

• The first report statement in procedure store_data writes string my_string to file
log.txt. My_string is an example of the VHDL constrained string type, consisting of
non-printable control characters37 concatenated with printable characters.

• Two loops are employed in process p1 to apply signal test vectors to the input of
comb1: the first loop counts up from one and the second loop counts down from the
number of lines of test vectors read by procedure store_data, effectively generating
test vectors in a way similar to using an up-down pattern generator counter. Note
that the signal data is applied to the circuit under test on the rising edge of the clock
signal and that the applied signal vector sequence is really up to the imagination of
the VHDL programmer.

• The write statements in the process p1 for loops demonstrate the formatted version
of the textio write statement. This greatly assists in setting up tables of results.
Table 9 gives a typical log.txt content for the comb1 test simulation.

• In process p1 signals v1, v2, v3 and v4 are assigned an indexed value from (type
array_list) v1sd, v2sd, v3sd and v4sd signals. During simulation Qucs/FreeHDL
stores signal values as a simulation progresses. Hence, it is theoretically possible to
display both the standard and composite signal types. A typical waveform plot for
signals v1, v2, v3, v4 and y_out is given in Fig. 30. Fig. 31 illustrates a waveform
plot of the composite signals v1sd, v2sd, v3sd and v4sd. In Fig. 31 each group is
plotted at a clock edge change yielding identical groups of values; each vertical set
of bits represents the bit values for a single line in file test1_data. Compare the
displayed values in Fig. 31 with the contents of the test1_data file shown in Fig. 32.
As mentioned before some care is needed when plotting, or tabulating, composite
signals, particularly when the array sizes are large; array dimensions above roughly
50 become difficult to plot on a normal resolution screen. In such cases it is better
to slice part of an array and assign the required values to a signal that can be easily
displayed.

absolute location of the test data file will depend on where Qucs and FreeHDL have been installed and
the location where work files are kept.

37Type character in package standard lists the two letter codes used by VHDL to represent non-printable
control characters.

78



Output :
−−−−−−−−−−
Sta r t i ng new s imu la t i on on Fr i 25 . Aug 2006 at 14 : 35 : 48
running C++ conver s i on . . . done .
compi l ing func t i on s . . . done .
compi l ing main . . . done .
l i n k i n g . . . done .
s imu la t ing . . .
0 f s + 0d : NOTE:
Constrained s t r i n g
0 f s + 0d : NOTE: In f i l e read loop .
.
0 f s + 0d : NOTE: In f i l e read loop .
count = 16
Time = 0 ns Test v e c to r s −> 0 0 0 0 k = 1
Time = 20 ns Test v e c to r s −> 0 0 0 0 k = 2
Time = 40 ns Test v e c to r s −> 0 0 0 1 k = 3
Time = 60 ns Test v e c to r s −> 0 0 1 0 k = 4
.
Time = 200 ns Test v e c to r s −> 1 0 0 1 k = 11
Time = 220 ns Test v e c to r s −> 1 0 1 0 k = 12
Time = 240 ns Test v e c to r s −> 1 0 1 1 k = 13
Time = 260 ns Test v e c to r s −> 1 1 0 0 k = 14
Time = 280 ns Test v e c to r s −> 1 1 0 1 k = 15
Time = 300 ns Test v e c to r s −> 1 1 1 0 k = 16
Time = 320 ns Test v e c to r s −> 1 1 1 1 k = 16
Time = 340 ns Test v e c to r s −> 1 1 1 1 k = 15
Time = 360 ns Test v e c to r s −> 1 1 1 0 k = 14
Time = 380 ns Test v e c to r s −> 1 1 0 1 k = 13
Time = 400 ns Test v e c to r s −> 1 1 0 0 k = 12
.
Time = 560 ns Test v e c to r s −> 0 1 0 0 k = 4
Time = 580 ns Test v e c to r s −> 0 0 1 1 k = 3
running VCD conver s i on . . . done .
Simulat ion ended on Fr i 25 . Aug 2006 at 14 : 35 : 50
Ready .
Errors :

Table 9: An edited version of the formatted tabular output results written to file log.txt.
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dtime

v1.X
v2.X
v3.X
v4.X
y_out.X

180n 190n 200n 210n 220n 230n 240n 250n 260n 270n 280n 290n 300n 310n 320n 330n 340n 350n 360n

dtime

v1.X
v2.X
v3.X
v4.X
y_out.X

0 10n 20n 30n 40n 50n 60n 70n 80n 90n 100n 110n 120n 130n 140n 150n 160n 170n 180n

dtime

v1.X
v2.X
v3.X
v4.X
y_out.X

220n 230n 240n 250n 260n 270n 280n 290n 300n 310n 320n 330n 340n 350n 360n 370n 380n 390n 400n

dtime

v1.X
v2.X
v3.X
v4.X
y_out.X

400n 410n 420n 430n 440n 450n 460n 470n 480n 490n 500n 510n 520n 530n 540n 550n 560n 570n 580n

Figure 30: Typical timing diagram for comb1 simulation.

dtime

v1sd.X
v2sd.X
v3sd.X
v4sd.X

40n 50n 60n 70n 80n

01010101010101010000 01010101010101010000 01010101010101010000 01010101010101010000
00110011001100110000 00110011001100110000 00110011001100110000 00110011001100110000
00001111000011110000 00001111000011110000 00001111000011110000 00001111000011110000
00000000111111110000 00000000111111110000 00000000111111110000 00000000111111110000

Figure 31: Typical timing diagram for composite signals v1sd, v2sd, v3sd and v4sd.
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0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Figure 32: Comb1 simulation test vectors.

End note

Qucs 0.0.8 added digital simulation to the impressive list of features already available in the
Qucs package. The 0.0.8 release represented a significant step forward in the development of
the Qucs project. The fact that there were bugs in the first version of the digital simulator
was not surprising given the complexity of the software. Release 0.0.9 goes a long way to
correcting the most annoying of these bugs. It also adds a number of new features, the most
notable being the new VHDL editor and the automatic generation of component symbols
from hand crafted VHDL model code. Qucs 0.0.10 and FreeHDL 0.0.3 adds a range of new
features to the software, particularly important are the use of the IEEE std_logic_1164
package and the file handling routines found in the textio package. My thanks to Michael
Margraf and Stefan Jahn for all their encouragement during the period that I have been
testing the Qucs VHDL digital simulation and the subsequent writing of these notes.
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