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Chapter 1

Scattering parameters

1.1 Introduction and definition
Voltage and current are hard to measure at high frequencies. Short and open circuits (used by definitions
of most n-port parameters) are hard to realize at high frequencies. Therefore, microwave engineers work
with so-called scattering parameters (S parameters), that uses waves and matched terminations (normally
50Ω). This procedure also minimizes reflection problems.

A (normalized) wave is defined as ingoing wave a or outgoing wave b:

a =
u+Z0 · i

2︸ ︷︷ ︸
U f orward

· 1√
|ReZ0)|

b =
u−Z∗0 · i

2︸ ︷︷ ︸
Ubackward

· 1√
|ReZ0)|

(1.1)

where u is (effective) voltage, i (effective) current flowing into the device and Z0 reference impedance. The
waves are related to power in the following way.

P =
(
|a|2−|b|2

)
(1.2)

Sometimes waves are defined with peak voltages and peak currents. The only difference that appears then
is the relation to power:

P =
1
2
·
(
|a|2−|b|2

)
(1.3)

Now, characterizing an n-port is straight-forward:b1
...

bn

=

S11 . . . S1n
...

. . .
...

Sn1 . . . Snn

 ·
a1

...
an

 (1.4)

One final note: The reference impedance Z0 can be arbitrary chosen. It normally is real, and there is no
urgent reason to use a complex one. The definitions in equation 1.1, however, are made form complex
impedances. These ones stem from [1], where they are named ”power waves”. These power waves are a
useful way to define waves with complex reference impedances, but they differ from the waves introduced
in the following chapter. For real reference impedances both definitions equal each other.

1.2 Waves on Transmission Lines
This section should derive the existence of the voltage and current waves on a transmission line. This way,
it also proofs that the definitions from the last section make sense.
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Figure 1.1: Infinite short piece of transmission line

Figure 1.1 shows the equivalent circuit of an infinite short piece of an arbitrary transmission line. The
names of the components all carry a single quotation mark which indicates a per-length quantity. Thus, the
units are ohms/m for R′, henry/m for L′, siemens/m for G′ and farad/m for C′. Writing down the change of
voltage and current across a piece with length ∂z results in the transmission line equations.

∂u
∂z

=−R′ · i(z)−L′ · ∂i
∂t

(1.5)

∂i
∂z

=−G′ ·u(z)−C′ · ∂u
∂t

(1.6)

Transforming these equations into frequency domain leads to:

∂U
∂z

=−I(z) ·(R′+ jωL′) (1.7)

∂I
∂z

=−U(z) ·(G′+ jωC′) (1.8)

Taking equation 1.8 and setting it into the first derivative of equation 1.7 creates the wave equation:

∂2U
∂z2 = γ

2 ·U (1.9)

with γ2 = (α+ jβ)2 = (R′+ jωL′) ·(G′+ jωC′). The complete solution of the wave equation is:

U(z) = U1 · exp(−γ ·z)︸ ︷︷ ︸
U f (z)

+U2 · exp(γ ·z)︸ ︷︷ ︸
Ub(z)

(1.10)

As can be seen, there is a voltage wave U f (z) traveling forward (in positive z direction) and there is a
voltage wave Ub(z) traveling backwards (in negative z direction). By setting equation 1.10 into equation
1.7, it becomes clear that the current behaves in the same way:

I(z) =
γ

R′+ jωL′︸ ︷︷ ︸
Y L

·
(
U f (z)−Ub(z)

)
=: I f (z)+ Ib(z) (1.11)

Note that both current waves are counted positive in positive z direction. In literature, the backward flowing
current wave Ib(z) is sometime counted the otherway around which would avoid the negative sign within
some of the following equations.
Equation 1.11 introduces the characteristic admittance Y L. The propagation constant γ and the characteristic
impedance ZL are the two fundamental properties describing a transmission line.

ZL =
1

Y L
=

U f

I f
=−Ub

Ib
=

√
R′+ jωL′

G′+ jωC′
≈
√

L′

C′
(1.12)
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Note that ZL is a real value if the line loss (due to R′ and G′) is small. This is often the case in reality. A
further very important quantity is the reflexion coefficient r which is defined as follows:

r =
Ub

U f
=− Ib

I f
=

Ze−ZL

Ze +ZL
(1.13)

The equation shows that a part of the voltage and current wave is reflected back if the end of a transmis-
sion line is not terminated by an impedance that equals ZL. The same effect occurs in the middle of a
transmission line, if its characteristic impedance changes.

U = U f +Ub I = I f + Ib

U f = 1
2 ·(U + I ·ZL) I f = 1

2 ·(U/ZL + I)

Ub = 1
2 ·(U− I ·ZL) Ib = 1

2 ·(I−U/ZL)

1.3 Computing with S-parameters

1.3.1 S-parameters in CAE programs
The most common task of a simulation program is to compute the S parameters of an arbitrary network that
consists of many elementary components connected to each other. To perform this, one can build a large
matrix containing the S parameters of all components and then use matrix operations to solve it. However
this method needs heavy algorithms. A more elegant possibility was published in [2]. Each step computes
only one connection and so unites two connected components to a single S parameter block. This procedure
has to be done with every connection until there is only one block left whose S parameters therefore are
the simulation result.

Connecting port k of circuit (S) with port l of circuit (T ), the new S-parameters are

S′i j = Si j +
Sk j ·T ll ·Sik

1−Skk ·T ll
(1.14)

with i and j both being ports of (S). Furthermore, it is

S′m j =
Sk j ·T ml

1−Skk ·T ll
(1.15)

with m being a port of the circuit (T ). If two ports of the same circuit (S) are connected, the new S-
parameters are

S′i j = Si j +
Sk j ·Sil ·(1−Slk)+Sl j ·Sik ·(1−Skl)+Sk j ·Sll ·Sik +Sl j ·Skk ·Sil

(1−Skl) ·(1−Slk)−Skk ·Sll
. (1.16)

If more than two ports are connected at a node, one have to insert one or more ideal tee components. Its
S-parameters write as follows. (

S
)

=
1
3
·

−1 2 2
2 −1 2
2 2 −1

 (1.17)

For optimisation reasons it may be desirable to insert a cross if at least four components are connected at
one node. Its S-parameters write as follows.

(
S
)

=
1
2
·


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 (1.18)

8



The formulas (1.14), (1.15) and (1.16) were obtained using the “nontouching-loop” rule being an analytical
method for solving a flow graph. A few basic definitions have to be understood.

A “path” is a series of branches into the same direction with no node touched more than once. A paths
value is the product of the coefficients of the branches. A “loop” is formed when a path starts and finishes
at the same node. A “first-order” loop is a path coming to closure with no node passed more than once. Its
value is the product of the values of all branches encountered on the route. A “second-order” loop consists
of two first-order loops not touching each other at any node. Its value is calculated as the product of the
values of the two first-order loops. Third- and higher-order loops are three or more first-order loops not
touching each other at any node.

The nontouching-loop rule can be applied to solve any flow graph. In the following equation in symbolic
form T represents the ratio of the dependent variable in question and the independent variable.

T =

P1 ·
(

1−ΣL(1)
1 +ΣL(1)

2 −ΣL(1)
3 + . . .

)
+P2 ·

(
1−ΣL(2)

1 +ΣL(2)
2 −ΣL(2)

3 + . . .
)

+P3 ·
(

1−ΣL(3)
1 +ΣL(3)

2 −ΣL(3)
3 + . . .

)
+P4 · (1− . . .)+ . . .

1−ΣL1 +ΣL2−ΣL3 + . . .
(1.19)

In eq. (1.19) ΣL1 stands for the sum of all first-order loops, ΣL2 is the sum of all second-order loops, and
so on. P1, P2, P3 etc., stand for the values of all paths that can be found from the independent variable to the
dependent variable. ΣL(1)

1 denotes the sum of those first-order loops which do not touch (hence the name)
the path of P1 at any node, ΣL(1)

2 denotes then the sum of those second-order loops which do not touch the
path P1 at any point, ΣL(2)

1 consequently denotes the sum of those first-order loops which do not touch the
path of P2 at any point. Each path is multiplied by the factor in parentheses which involves all the loops of
all orders that the path does not touch.

When connecting two different networks the signal flow graph in fig. 1.2 is used to compute the new S-
parameters. With equally reference impedances on port k and port l the relations ak = bl and al = bk are
satisfied.

Figure 1.2: signal flow graph of a joint between ports k and l on different networks

There is only one first-order loop (see fig. 1.3) within this signal flow graph. This loops value yields to

L11 = Skk ·T ll (1.20)
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Figure 1.3: loops in the signal flow graph when connecting ports k and l on different networks

The paths that can be found from the independent variable a j to the dependent variable bi (as depicted in
fig. 1.4) can be written as

P1 = Sk j ·T ll ·Sik (1.21)

P2 = Si j (1.22)

Figure 1.4: paths in the signal flow graph when connecting ports k and l on different networks

Applying the nontouching-loop rule, i.e. eq. (1.19), gives the new S-parameter S′i j

S′i j =
bi

a j
=

P1 · (1−L11)+P2 ·1
1−L11

=
Si j · (1−Skk ·T ll)+Sk j ·T ll ·Sik

1−Skk ·T ll
= Si j +

Sk j ·T ll ·Sik

1−Skk ·T ll

(1.23)

The only path that can be found from the independent variable a j to the dependent variable bm (as depicted
in fig. 1.4) can be written as

P1 = Sk j ·T ml (1.24)

Thus the new S-parameter S′m j yields to

S′m j =
bm

a j
=

P1 ·1
1−L11

=
Sk j ·T ml

1−Skk ·T ll
(1.25)

When connecting the same network the signal flow graph in fig. 1.5 is used to compute the new S-
parameters. With equally reference impedances on port k and port l the relations ak = bl and al = bk
are satisfied.
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Figure 1.5: signal flow graph of a joint between ports k and l on the same network

There are three first-order loops and a second-order loop (see fig. 1.6) within this signal flow graph. These
loops’ values yield to

L11 = Skk ·Sll (1.26)
L12 = Skl (1.27)
L13 = Slk (1.28)
L21 = L12 ·L13 = Skl ·Slk (1.29)

Figure 1.6: loops in the signal flow graph when connecting ports k and l on the same network

There are five different paths that can be found from the independent variable a j to the dependent variable
bi (as depicted in fig. 1.7) which can be written as

P1 = Sk j ·Sll ·Sik (1.30)

P2 = Sk j ·Sil (1.31)

P3 = Sl j ·Sik (1.32)

P4 = Si j (1.33)

P5 = Sl j ·Skk ·Sil (1.34)
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Figure 1.7: paths in the signal flow graph when connecting ports k and l on the same network

Thus the new S-parameter S′i j yields to

S′i j =
P1 +P2 · (1−L13)+P3 · (1−L12)+P4 · (1− (L11 +L12 +L13)+L21)+P5

1− (L11 +L12 +L13)+L21

= P4 +
P1 +P2 · (1−L13)+P3 · (1−L12)+P5

1− (L11 +L12 +L13)+L21

= Si j +
Sk j ·Sll ·Sik +Sk j ·Sil · (1−Slk)+Sl j ·Sik · (1−Skl)+Sl j ·Skk ·Sil

1− (Skk ·Sll +Skl +Slk)+Skl ·Slk

= Si j +
Sk j ·Sll ·Sik +Sk j ·Sil · (1−Slk)+Sl j ·Sik · (1−Skl)+Sl j ·Skk ·Sil

(1−Skl) · (1−Slk)−Skk ·Sll

(1.35)

This short introduction to signal flow graphs and their solution using the nontouching-loop rule verifies the
initial formulas used to compute the new S-parameters for the reduced subnetworks.

1.3.2 Differential S-parameter ports
The implemented algorithm for the S-parameter analysis calculates S-parameters in terms of the ground
node. In order to allow differential S-parameters as well it is necessary to insert an ideal impedance
transformer with a turns ratio of 1:1 between the differential port and the device under test.
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Figure 1.8: transformation of differential port into single ended port

The S-parameter matrix of the inserted ideal transformer being a three port device can be written as follows.

(
S
)

=
1
3
·

 1 2 −2
2 1 2
−2 2 1

 (1.36)

This transformation can be applied to each S-parameter port in a circuit regardless whether it is actually
differential or not.

It is also possible to do the impedance transformation within this step (for S-parameter ports with impedances
different than 50Ω). This can be done by using a transformer with an impedance ration of

r = T 2 =
50Ω

Z
(1.37)

With Z being the S-parameter port impedance. The S-parameter matrix of the inserted ideal transformer
now writes as follows.

(
S
)

=
1

2 ·Z0 +Z
·

 2 ·Z0−Z 2 ·
√

Z0 ·Z −2 ·
√

Z0 ·Z
2 ·
√

Z0 ·Z Z 2 ·Z0
−2 ·
√

Z0 ·Z 2 ·Z0 Z

 (1.38)

With Z being the new S-parameter port impedance and Z0 being 50Ω.

1.4 Applications

1.4.1 Stability
A very important task in microwave design (especially for amplifiers) is the question, whether the circuit
tends to unwanted oscillations. A two-port oscillates if, despite of no signal being fed into it, AC power
issues from at least one of its ports. This condition can be easily expressed in terms of RF quantities, so a
circuit is stable if:

|r1|< 1 and |r2|< 1 (1.39)

with r1 being reflexion coefficient of port 1 and r2 the one of port 2.
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A further question can be asked: What conditions must be fulfilled to have a two-port be stable for all com-
binations of passive impedance terminations at port 1 and port 2? Such a circuit is called unconditionally
stable. [3] is one of the best discussions dealing with this subject.

A circuit is unconditionally stable if the following two relations hold:

K =
1−|S11|2−|S22|2 + |∆|2

2 · |S12 ·S21|
> 1 (1.40)

|∆|= |S11 ·S22−S12 ·S21|< 1 (1.41)

with ∆ being the determinant of the S parameter matrix of the two port. K is called Rollet stability factor.
Two relations must be fulfilled to have a necessary and sufficient criterion.

A more practical criterion (necessary and sufficient) for unconditional stability is obtained with the µ-factor:

µ =
1−|S11|2

|S22−S∗11 ·∆|+ |S12 ·S21|
> 1 (1.42)

Because of symmetry reasons, a second stability factor must exist that also gives a necessary and sufficient
criterion for unconditional stability:

µ′ =
1−|S22|2

|S11−S∗22 ·∆|+ |S12 ·S21|
> 1 (1.43)

For conditional stable two-ports it is interesting which which load and which source impedance may cause
instability. This can be seen using stability circles [4]. A disadvantage of this method is that the radius of
the below-mentioned circles can become infinity. (A circle with infinite radius is a line.)

Within the reflexion coefficient plane of the load (rL-plane), the stability circle is:

rcenter =
S∗22−S11 ·∆∗

|S22|2−|∆|2
(1.44)

Radius =
|S12| · |S21|
|S22|2−|∆|2

(1.45)

If the center of the rL-plane lies within this circle and |S11| ≤ 1 then the circuit is stable for all reflexion
coefficients inside the circle. If the center of the rL-plane lies outside the circle and |S11| ≤ 1 then the circuit
is stable for all reflexion coefficients outside the circle.

Very similar is the situation for reflexion coefficients in the source plane (rS-plane). The stability circle is:

rcenter =
S∗11−S22 ·∆∗

|S11|2−|∆|2
(1.46)

Radius =
|S12| · |S21|
|S11|2−|∆|2

(1.47)

If the center of the rS-plane lies within this circle and |S22| ≤ 1 then the circuit is stable for all reflexion
coefficients inside the circle. If the center of the rS-plane lies outside the circle and |S22| ≤ 1 then the circuit
is stable for all reflexion coefficients outside the circle.
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1.4.2 Gain
Maximum available and stable power gain (only for unconditional stable 2-ports) [4]:

Gmax =
∣∣∣∣S21

S12

∣∣∣∣ · (K−
√

K2−1
)

(1.48)

where K is Rollet stability factor.

The (bilateral) transmission power gain of a two-port can be split into three parts [4]:

G = GS ·G0 ·GL (1.49)

with

GS =
(1−|rS|2) ·(1−|r1|2)

|1− rS ·r1|2
(1.50)

G0 = |S21|2 (1.51)

GL =
1−|rL|2

|1− rL ·S22|2 ·(1−|r1|2)
(1.52)

where r1 is reflexion coefficient of the two-port input.

The curves of constant gain are circles in the reflexion coefficient plane. The circle for the load-mismatched
two-port with gain GL is

rcenter =
(S∗22−S11 ·∆∗) ·GL

GL ·(|S22|2−|∆|2)+1
(1.53)

Radius =

√
1−GL ·(1−|S11|2−|S22|2 + |∆|2)+G2

L · |S12 ·S21|2

GL ·(|S22|2−|∆|2)+1
(1.54)

The circle for the source-mismatched two-port with gain GS is

rcenter =
GS ·r∗1

1−|r1|2 ·(1−GS)
(1.55)

Radius =
√

1−GS ·(1−|r1|2)
1−|r1|2 ·(1−GS)

(1.56)

with
r1 = S11 +

S12 ·S21 ·rL

1− rL ·S22
(1.57)

The available power gain GA of a two-port is reached when the load is conjugately matched to the output
port. It is:

GA =
|S21|2 ·(1−|rS|2)

|1−S11 ·rS|2−|S22−∆ ·rS|2
(1.58)

with ∆ = S11S22−S12S21. The curves with constant gain GA are circles in the source reflexion coefficient
plane (rS-plane). The center rS,c and the radius RS are:

rS,c =
gA ·C∗1

1+gA ·(|S11|2−|∆|2)
(1.59)

RS =

√
1−2 ·K ·gA · |S12S21|+g2

A · |S12S21|2

|1+gA ·(|S11|2−|∆|2)|
(1.60)

with C1 = S11−S∗22 ·∆, gA = GA/|S21|2 and K Rollet stability factor.
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The operating power gain GP of a two-port is the power delivered to the load divided by the input power of
the amplifier. It is:

GP =
|S21|2 ·(1−|rL|2)

|1−S22 ·rL|2−|S11−∆ ·rL|2
(1.61)

with ∆ = S11S22− S12S21. The curves with constant gain GP are circles in the load reflexion coefficient
plane (rL-plane). The center rL,c and the radius RL are:

rL,c =
gP ·C∗2

1+gP ·(|S22|2−|∆|2)
(1.62)

RL =

√
1−2 ·K ·gP · |S12S21|+g2

P · |S12S21|2

|1+gP ·(|S22|2−|∆|2)|
(1.63)

with C2 = S22−S∗11 ·∆, gP = GP/|S21|2 and K Rollet stability factor.

1.4.3 Two-Port Matching
Obtaining concurrent power matching of input and output in a bilateral circuit is not such simple, due to
the backward transmission S12. However, in linear circuits, this task can be easily solved by the following
equations:

∆ = S11 ·S22−S12 ·S21 (1.64)

B = 1+ |S11|2−|S22|2−|∆|2 (1.65)
C = S11−S∗22 ·∆ (1.66)

rS =
1

2 ·C
·
(

B−
√

B2−|2 ·C|2
)

(1.67)

Here rS is the reflexion coefficient that the circuit needs to see at the input port in order to reach concurrently
matched in- and output. For the reflexion coefficient at the output rL the same equations hold by simply
changing the indices (exchange 1 by 2 and vice versa).
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Chapter 2

Noise Waves

2.1 Definition
In microwave circuits described by scattering parameters, it is advantageous to regard noise as noise waves
[5]. The noise characteristics of an n-port is then defined completely by one outgoing noise wave bnoise,n
at each port (see 2-port example in fig. 2.1) and the correlation between these noise sources. Therefore,
mathematically, you can characterize a noisy n-port by its n× n scattering matrix (S) and its n× n noise
wave correlation matrix (C).

(C) =


bnoise,1 ·b∗noise,1 bnoise,1 ·b∗noise,2 . . . bnoise,1 ·b∗noise,n
bnoise,2 ·b∗noise,1 bnoise,2 ·b∗noise,2 . . . bnoise,2 ·b∗noise,n

...
...

. . .
...

bnoise,n ·b∗noise,1 bnoise,n ·b∗noise,2 . . . bnoise,n ·b∗noise,n



=


c11 c12 . . . c1n
c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn


(2.1)

Where x is the time average of x and x∗ is the conjugate complex of x. Noise correlation matrices are
hermitian matrices because the following equations hold.

Im(cnn) = Im
(
|bnoise,n|2

)
= 0 (2.2)

cnm = c∗mn (2.3)

Where Im(x) is the imaginary part of x and |x| is the magnitude of x.
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Figure 2.1: signal flow graph of a noisy 2-port

2.2 Noise Parameters
Having the noise wave correlation matrix, one can easily compute the noise parameters [5]. The following
equations calculate them with regard to port 1 (input) and port 2 (output). (If one uses an n-port and want
to calculate the noise parameters regarding to other ports, one has to replace the index numbers of S- and
c-parameters accordingly. I.e. replace ”1” with the number of the input port and ”2” with the number of
the output port.)

Noise figure:
F = 1+

c22

k ·T0 · |S21|2
(2.4)

NF [dB] = 10 · lgF (2.5)

Optimal source reflection coefficient (normalized according to the input port impedance):

Γopt = η2 ·

(
1−

√
1− 1
|η2|2

)
(2.6)

With
η1 = c11 · |S21|2−2 ·Re(c12 ·S21 ·S∗11)+ c22 · |S11|2 (2.7)

η2 =
1
2
· c22 +η1

c22 ·S11− c12 ·S21
(2.8)

Minimum noise figure:

Fmin = 1+
c22−η1 · |Γopt |2

k ·T0 · |S21|2 ·(1+ |Γopt |2)
(2.9)

NFmin = 10 · lgFmin (2.10)

Equivalent noise resistance:

Rn =
Zport,in

4 ·k ·T0
·

(
c11−2 ·Re

(
c12 ·

(
1+S11

S21

)∗)
+ c22 ·

∣∣∣∣1+S11
S21

∣∣∣∣2
)

(2.11)

With Zport,in internal impedance of input port
Boltzmann constant k = 1.380658 ·10−23 J/K
standard temperature T0 = 290K
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Calculating the noise wave correlation coefficients from the noise parameters is straightforward as well.

c11 = k ·Tmin ·(|S11|2−1)+Kx · |1−S11 ·Γopt |2 (2.12)

c22 = |S21|2 ·
(
k ·Tmin +Kx · |Γopt |2

)
(2.13)

c12 = c∗21 =−S∗21 ·Γ∗opt ·Kx +
S11

S21
·c22 (2.14)

with
Kx =

4 ·k ·T0 ·Rn

Z0 · |1+Γopt |2
(2.15)

Once having the noise parameters, one can calculate the noise figure for every source admittance YS =
GS + j ·Bs, source impedance ZS = RS + j ·Xs, or source reflection coefficient rS.

F =
SNRin

SNRout
=

Tequi

T0
+1 (2.16)

= Fmin +
Gn

RS
·
(
(RS−Ropt)2 +(XS−Xopt)2) (2.17)

= Fmin +
Gn

RS
·
∣∣ZS−Zopt

∣∣2 (2.18)

= Fmin +
Rn

GS
·
(
(GS−Gopt)2 +(BS−Bopt)2) (2.19)

= Fmin +
Rn

GS
·
∣∣Y S−Y opt

∣∣2 (2.20)

= Fmin +4 · Rn

Z0
·

∣∣Γopt − rS
∣∣2

(1−|rS|2) ·
∣∣1+Γopt

∣∣2 (2.21)

Where SNRin and SNRout are the signal to noise ratios at the input and output, respectively, Tequi is the
equivalent (input) noise temperature. Note that Gn does not equal 1/Rn.

All curves with constant noise figures are circles (in all planes, i.e. impedance, admittance and reflection
coefficient). A circle in the reflection coefficient plane has the following parameters.

center point:

rcenter =
Γopt

1+N
(2.22)

radius:

R =

√
N2 +N ·(1−|Γopt |2)

1+N
(2.23)

with
N =

Z0

4 ·Rn
·(F−Fmin) · |1+Γopt |2 (2.24)

2.3 Noise Wave Correlation Matrix in CAE
Due to the similar concept of S parameters and noise correlation coefficients, the CAE noise analysis can
be performed quite alike the S parameter analysis (section 1.3.1). As each step uses the S parameters to
calculate the noise correlation matrix, the noise analysis is best done step by step in parallel with the S
parameter analysis. Performing each step is as follows: We have the noise wave correlation matrices ( (C),
(D) ) and the S parameter matrices ( (S), (T ) ) of two arbitrary circuits and want to know the correlation
matrix of the special circuit resulting from connecting two circuits at one port.
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Figure 2.2: connecting two noisy circuits, scheme (left) and signal flow graph (right)

An example is shown in fig. 2.2. What we have to do is to transform the inner noise waves bnoise,k and
bnoise,l to the open ports. Let us look upon the example. According to the signal flow graph the resulting
noise wave b′noise,i writes as follows:

b′noise,i = bnoise,i +bnoise,k ·
T ll ·Sik

1−Skk ·T ll
+bnoise,l ·

Sik

1−Skk ·T ll
(2.25)

The noise wave bnoise, j does not contribute to b′noise,i, because no path leads to port i. Calculating b′noise, j is
quite alike:

b′noise, j = bnoise, j +bnoise,l ·
T jl ·Skk

1−Skk ·T ll
+bnoise,k ·

T jl

1−Skk ·T ll
(2.26)

Now we can derive the first element of the new noise correlation matrix by multiplying eq. (2.25) with eq.
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(2.26).

c′i j = b′noise,i ·b′∗noise, j

= bnoise,i ·b∗noise, j

+bnoise,i ·b∗noise,l ·
(

T jl ·Skk

1−Skk ·T ll

)∗
+bnoise,i ·b∗noise,k ·

(
T jl

1−Skk ·T ll

)∗
+bnoise,k ·b∗noise, j ·

T ll ·Sik

1−Skk ·T ll

+bnoise,k ·b∗noise,l ·
T ll ·Sik ·T ∗jl ·S

∗
kk

|1−Skk ·T ll |2
+bnoise,k ·b∗noise,k ·

T ll ·Sik ·T ∗jl
|1−Skk ·T ll |2

+bnoise,l ·b∗noise, j ·
Sik

1−Skk ·T ll

+bnoise,l ·b∗noise,l ·
Sik ·T ∗jl ·S

∗
kk

|1−Skk ·T ll |2
+bnoise,l ·b∗noise,k ·

Sik ·T ∗jl
|1−Skk ·T ll |2

(2.27)

The noise waves of different circuits are uncorrelated and therefore their time average product equals zero
(e.g. bnoise,i ·b∗noise, j = 0). Thus, the final result is:

c′i j = (c′ji)
∗ = (ckk ·T ll +dll ·S∗kk) ·

Sik ·T ∗jl
|1−Skk ·T ll |2

+ cik ·
(

T jl

1−Skk ·T ll

)∗
+dl j ·

Sik

1−Skk ·T ll

(2.28)

All other cases of connecting circuits can be calculated the same way using the signal flow graph. The
results are listed below.

If index i and j are within the same circuit, it results in fig. 2.3. The following formula holds:

c′i j = (c′ji)
∗ = ci j +(ckk · |T ll |2 +dll) ·

Sik ·S∗jk
|1−Skk ·T ll |2

+ cik ·
(

T ll ·S jk

1−Skk ·T ll

)∗
+ ck j ·

T ll ·Sik

1−Skk ·T ll

(2.29)

This equation is also valid, if i equals j.

Figure 2.3: connecting two noisy circuits

If the connected ports k and l are from the same circuit, the following equations must be applied (see also
fig. 2.4) to obtain the new correlation matrix coefficients.

M = (1−Skl) ·(1−Slk)−Skk ·Sll (2.30)
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K1 =
Sil ·(1−Slk)+Sll ·Sik

M
(2.31)

K2 =
Sik ·(1−Skl)+Skk ·Sil

M
(2.32)

K3 =
S jl ·(1−Slk)+Sll ·S jk

M
(2.33)

K4 =
S jk ·(1−Skl)+Skk ·S jl

M
(2.34)

c′i j = ci j + ck j ·K1 + cl j ·K2 +K∗3 ·(cik + ckk ·K1 + clk ·K2)+

K∗4 ·(cil + ckl ·K1 + cll ·K2)
(2.35)

These equations are also valid if i equals j.

Figure 2.4: connection within a noisy circuits

The absolute values of the noise correlation coefficients are very small. To achieve a higher numerical
precision, it is recommended to normalize the noise matrix with k ·T0. After the simulation they do not
have to be denormalized, because the noise parameters can be calculated by using equation (2.4) to (2.11)
and omitting all occurrences of k ·T0.

The transformer concept to deal with different port impedances and with differential ports (as described in
section 1.3.2) can also be applied to this noise analysis.

2.4 Noise Correlation Matrix Transformations
The noise wave correlation matrix of a passive linear circuit generating thermal noise can simply be calcu-
lated using Bosma’s theorem. The noise wave correlation matrices of active devices can be determined by
forming the noise current correlation matrix and then transforming it to the equivalent noise wave correla-
tion matrix.

The noise current correlation matrix (also called the admittance representation) CY is an n×n matrix.

CY =


i1 · i∗1 i1 · i∗2 . . . i1 · i∗n
i2 · i∗1 i2 · i∗2 . . . i2 · i∗n

...
...

. . .
...

in · i∗1 in · i∗2 . . . in · i∗n

=


c11 c12 . . . c1n
c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn

 (2.36)

This definition is very likely the one made by eq. (2.1). The matrix has the same properties as well.
Because in most transistor models the noise behaviour is expressed as the sum of effects of noise current
sources it is easier to form this matrix representation.
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2.4.1 Forming the noise current correlation matrix
Each element in the diagonal matrix is equal to the sum of the noise current of each element connected to
the corresponding node. So the first diagonal element is the sum of noise currents connected to node 1, the
second diagonal element is the sum of noise currents connected to node 2, and so on.

The off diagonal elements are the negative noise current of the element connected to the pair of correspond-
ing node. Therefore a noise current source between nodes 1 and 2 goes into the matrix at location (1,2) and
locations (2,1).

If a noise current source is grounded, it will only have contribute to one entry in the noise correlation
matrix – at the appropriate location on the diagonal. If it is ungrounded it will contribute to four entries in
the matrix – two diagonal entries (corresponding to the two nodes) and two off-diagonal entries.

Figure 2.5: example circuit applied to noise analysis

Once having defined the spectral noise current densities of the noise currents within a transistor model the
above rules for forming the CY matrix can be applied to the example circuit depicted in fig. 2.5. The noise
current correlation matrix is accordingly

CY =

[
+i21 −i21
−i21 i21 + i22

]
(2.37)

2.4.2 Transformations
There are three usable noise correlation matrix representations for multiport circuits.

• admittance representation CY - based on noise currents

• impedance representation CZ - based on noise voltages

• wave representation CS - based on noise waves

According to Scott W. Wedge and David B. Rutledge [5] the transformations between these representations
write as follows.

CY CZ CS

CY CY Y ·CZ ·Y + (E +Y ) ·CS · (E +Y )+

CZ Z ·CY ·Z+ CZ (E +Z) ·CS · (E +Z)+

CS
1
4

(E +S) ·CY · (E +S)+
1
4

(E−S) ·CZ · (E−S)+ CS
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The signal as well as correlation matrices in impedance and admittance representations are assumed to be
normalized in the above table. E denotes the identity matrix and the + operator indicates the transposed
conjugate matrix (also called adjoint or adjugate).

Each noise correlation matrix transformation requires the appropriate signal matrix representation which
can be obtained using the formulas given in section 15.1 on page 191.

2.5 Noise Wave Correlation Matrix of Components
Many components do not produce any noise. Every element of their noise correlation matrix therefore
equals exactly zero. Examples are lossless, passive components, i.e. capacitors, inductors, transformers,
circulators, phase shifters. Furthermore ideal voltage and current sources (without internal resistance) as
well as gyrators also do not produce any noise.

If one wants to calculate the noise wave correlation matrix of a component, the most universal method
is to take noise voltages and noise currents and then derive the noise waves by the use of equation (1.1).
However, this can be very difficult.

A passive, linear circuit produces only thermal noise and thus its noise waves can be calculated with
Bosma’s theorem (assuming thermodynamic equilibrium).

(C) = k ·T ·
(
(E)− (S) ·(S)∗T

)
(2.38)

with (S) being the S parameter matrix and (E) identity matrix. Of course, this theorem can also be written
with impedance and admittance representation of the noise correlation matrix:

CZ = 4 ·k ·T ·Re(Z) (2.39)

CY = 4 ·k ·T ·Re(Y ) (2.40)
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Chapter 3

DC Analysis

3.1 Modified Nodal Analysis
Many different kinds of network element are encountered in network analysis. For circuit analysis it is
necessary to formulate equations for circuits containing as many different types of network elements as
possible. There are various methods for equation formulation for a circuit. These are based on three types
of equations found in circuit theory:

• equations based on Kirchhoff’s voltage law (KVL)

• equations based on Kirchhoff’s current law (KCL)

• branch constitutive equations

The equations have to be formulated (represented in a computer program) automatically in a simple, com-
prehensive manner. Once formulated, the system of equations has to be solved. There are two main aspects
to be considered when choosing algorithms for this purpose: accuracy and speed. The MNA, briefly for
Modified Nodal Analysis, has been proved to accomplish these tasks.
MNA applied to a circuit with passive elements, independent current and voltage sources and active ele-
ments results in a matrix equation of the form:

[A] · [x] = [z] (3.1)

For a circuit with N nodes and M independent voltage sources:

• The A matrix

– is (N+M)×(N+M) in size, and consists only of known quantities

– the N×N part of the matrix in the upper left:

∗ has only passive elements
∗ elements connected to ground appear only on the diagonal
∗ elements not connected to ground are both on the diagonal and off-diagonal terms

– the rest of the A matrix (not included in the N×N upper left part) contains only 1, -1 and 0
(other values are possible if there are dependent current and voltage sources)

• The x matrix

– is an (N+M)×1 vector that holds the unknown quantities (node voltages and the currents
through the independent voltage sources)

– the top N elements are the n node voltages
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– the bottom M elements represent the currents through the M independent voltage sources in the
circuit

• The z matrix

– is an (N+M)×1 vector that holds only known quantities

– the top N elements are either zero or the sum and difference of independent current sources in
the circuit

– the bottom M elements represent the M independent voltage sources in the circuit

The circuit is solved by a simple matrix manipulation:

[x] = [A]−1 · [z] (3.2)

Though this may be difficult by hand, it is straightforward and so is easily done by computer.

3.1.1 Generating the MNA matrices
The following section is an algorithmic approach to the concept of the Modified Nodal Analysis. There
are three matrices we need to generate, the A matrix, the x matrix and the z matrix. Each of these will be
created by combining several individual sub-matrices.

3.1.2 The A matrix
The A matrix will be developed as the combination of 4 smaller matrices, G, B, C, and D.

A =
[

G B
C D

]
(3.3)

The A matrix is (M+N)×(M+N) (N is the number of nodes, and M is the number of independent voltage
sources) and:

• the G matrix is N×N and is determined by the interconnections between the circuit elements

• the B matrix is N×M and is determined by the connection of the voltage sources

• the C matrix is M×N and is determined by the connection of the voltage sources (B and C are closely
related, particularly when only independent sources are considered)

• the D matrix is M×M and is zero if only independent sources are considered

Rules for making the G matrix

The G matrix is an N×N matrix formed in two steps.

1. Each element in the diagonal matrix is equal to the sum of the conductance (one over the resistance)
of each element connected to the corresponding node. So the first diagonal element is the sum of con-
ductances connected to node 1, the second diagonal element is the sum of conductances connected
to node 2, and so on.

2. The off diagonal elements are the negative conductance of the element connected to the pair of
corresponding node. Therefore a resistor between nodes 1 and 2 goes into the G matrix at location
(1,2) and locations (2,1).

If an element is grounded, it will only have contribute to one entry in the G matrix – at the appropriate
location on the diagonal. If it is ungrounded it will contribute to four entries in the matrix – two diagonal
entries (corresponding to the two nodes) and two off-diagonal entries.
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Rules for making the B matrix

The B matrix is an N×M matrix with only 0, 1 and -1 elements. Each location in the matrix corresponds
to a particular voltage source (first dimension) or a node (second dimension). If the positive terminal of
the ith voltage source is connected to node k, then the element (k,i) in the B matrix is a 1. If the negative
terminal of the ith voltage source is connected to node k, then the element (k,i) in the B matrix is a -1.
Otherwise, elements of the B matrix are zero.

If a voltage source is ungrounded, it will have two elements in the B matrix (a 1 and a -1 in the same
column). If it is grounded it will only have one element in the matrix.

Rules for making the C matrix

The C matrix is an M×N matrix with only 0, 1 and -1 elements. Each location in the matrix corresponds to
a particular node (first dimension) or voltage source (second dimension). If the positive terminal of the ith
voltage source is connected to node k, then the element (i,k) in the C matrix is a 1. If the negative terminal
of the ith voltage source is connected to node k, then the element (i,k) in the C matrix is a -1. Otherwise,
elements of the C matrix are zero.

In other words, the C matrix is the transpose of the B matrix. This is not the case when dependent sources
are present.

Rules for making the D matrix

The D matrix is an M×M matrix that is composed entirely of zeros. It can be non-zero if dependent sources
are considered.

3.1.3 The x matrix
The x matrix holds our unknown quantities and will be developed as the combination of 2 smaller matrices
v and j. It is considerably easier to define than the A matrix.

x =
[

v
j

]
(3.4)

The x matrix is 1×(M+N) (N is the number of nodes, and M is the number of independent voltage sources)
and:

• the v matrix is 1×N and hold the unknown voltages

• the j matrix is 1×M and holds the unknown currents through the voltage sources

Rules for making the v matrix

The v matrix is an 1×N matrix formed of the node voltages. Each element in v corresponds to the voltage
at the equivalent node in the circuit (there is no entry for ground – node 0).

For a circuit with N nodes we get:

v =


v1
v2
...

vN

 (3.5)
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Rules for making the j matrix

The j matrix is an 1×M matrix, with one entry for the current through each voltage source. So if there are
M voltage sources V1, V2 through VM , the j matrix will be:

j =


iV1

iV2
...

iVM

 (3.6)

3.1.4 The z matrix
The z matrix holds our independent voltage and current sources and will be developed as the combination
of 2 smaller matrices i and e. It is quite easy to formulate.

z =
[

i
e

]
(3.7)

The z matrix is 1×(M+N) (N is the number of nodes, and M is the number of independent voltage sources)
and:

• the i matrix is 1×N and contains the sum of the currents through the passive elements into the
corresponding node (either zero, or the sum of independent current sources)

• the e matrix is 1×M and holds the values of the independent voltage sources

Rules for making the i matrix

The i matrix is an 1×N matrix with each element of the matrix corresponding to a particular node. The
value of each element of i is determined by the sum of current sources into the corresponding node. If there
are no current sources connected to the node, the value is zero.

Rules for making the e matrix

The e matrix is an 1×M matrix with each element of the matrix equal in value to the corresponding inde-
pendent voltage source.

3.1.5 A simple example
The example given in fig. 3.1 illustrates applying the rules for building the MNA matrices and how this
relates to basic equations used in circuit analysis.
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Figure 3.1: example circuit applied to modified nodal analysis

Going through the MNA algorithm

The G matrix is a 2×2 matrix because there are 2 different nodes apart from ground which is the reference
node. On the diagonal you find the sum of the elements conductances connected to the nodes 1 and 2.
The off-diagonal matrix entries contain the negative conductances of the elements connected between two
nodes.

G =

[
1

R1
− 1

R1
− 1

R1
1

R1
+ 1

R2

]
=
[

0.2 −0.2
−0.2 0.3

]
(3.8)

The B matrix (which is transposed to C) is a 1×2 matrix because there is one voltage source and 2 nodes.
The positive terminal of the voltage source V1 is connected to node 1. That is why

B = CT =
[

1
0

]
(3.9)

and the D matrix is filled with zeros only because there are no dependent (active and controlled) devices in
the example circuit.

D =
[
0
]

(3.10)

The x matrix is a 1×3 matrix. The MNA equations deliver a solution for the unknown voltages at each
node in a circuit except the reference node and the currents through each voltage source.

x =

v1
v2
iV1

 (3.11)

The z matrix is according to the rules for building it a 1×3 matrix. The upper two entries are the sums of
the currents flowing into node 1 and node 2. The lower entry is the voltage value of the voltage source V1.

z =

 0
I1
U1

=

0
1
1

 (3.12)

According to the MNA algorithm the equation system is represented by

[A] · [x] = [z] (3.13)

which is equivalent to [
G B
C D

]
·
[
x
]
=
[
z
]

(3.14)
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In the example eq. (3.14) expands to: 1
R1

− 1
R1

1
− 1

R1
1

R1
+ 1

R2
0

1 0 0

 ·
v1

v2
iV1

=

 0
I1
U1

 (3.15)

The equation systems to be solved is now defined by the following matrix representation. 0.2 −0.2 1
−0.2 0.3 0

1 0 0

 ·
v1

v2
iV1

=

0
1
1

 (3.16)

Using matrix inversion the solution vector x writes as follows:

[x] = [A]−1 · [z] =

v1
v2
iV1

=

 1
4

0.6

 (3.17)

The result in eq. (3.17) denotes the current through the voltage source V1 is 0.6A, the voltage at node 1 is
1V and the voltage at node 2 is 4V.

How the algorithm relates to basic equations in circuit analysis

Expanding the matrix representation in eq. (3.15) to a set of equations denotes the following equation
system consisting of 3 of them.

I : 0 =
1

R1
·v1−

1
R1
·v2 + iV1 KCL at node 1 (3.18)

II : I1 =− 1
R1
·v1 +

(
1

R1
+

1
R2

)
·v2 KCL at node 2 (3.19)

III : U1 = v1 constitutive equation (3.20)

Apparently eq. I and eq. II conform to Kirchhoff’s current law at the nodes 1 and 2. The last equation is
just the constitutive equation for the voltage source V1. There are three unknowns (v1, v2 and iV1 ) and three
equations, thus the system should be solvable.

Equation III indicates the voltage at node 1 is 1V. Applying this result to eq. II and transposing it to v2 (the
voltage at node 2) gives

v2 =
I1 + 1

R1
·U1

1
R1

+ 1
R2

= 4V (3.21)

The missing current through the voltage source V1 can be computed using both the results v2 = 4V and
v1 = 1V by transforming equation I.

iV1 =
1

R1
·v2−

1
R1
·v1 = 0.6A (3.22)

The small example, shown in fig. 3.1, and the excursus into artless math verifies that the MNA algorithm
and classic electrical handiwork tend to produce the same results.

3.2 Extensions to the MNA
As noted in the previous sections the D matrix is zero and the B and C matrices are transposed each
other and filled with either 1, -1 or 0 provided that there are no dependent sources within the circuit.
This changes when introducing active (and controlled) elements. Examples are voltage controlled voltage
sources, transformers and ideal operational amplifiers. The models are depicted in section 10 and 9
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3.3 Non-linear DC Analysis
Previous sections described using the modified nodal analysis solving linear networks including controlled
sources. It can also be used to solve networks with non-linear components like diodes and transistors. Most
methods are based on iterative solutions of a linearised equation system. The best known is the so called
Newton-Raphson method.

3.3.1 Newton-Raphson method
The Newton-Raphson method is going to be introduced using the example circuit shown in fig. 3.2 having
a single unknown: the voltage at node 1.

Figure 3.2: example circuit for non-linear DC analysis

The 1x1 MNA equation system to be solved can be written as[
G
]
·
[
V1
]
=
[
I0
]

(3.23)

whereas the value for G is now going to be explained. The current through a diode is simply determined
by Schockley’s approximation

Id = IS ·
(

e
Vd
VT −1

)
(3.24)

Thus Kirchhoff’s current law at node 1 can be expressed as

I0 =
V
R

+ IS ·
(

e
V

VT −1
)

(3.25)

By establishing eq. (3.26) it is possible to trace the problem back to finding the zero point of the function
f .

f (V ) =
V
R

+ IS ·
(

e
V

VT −1
)
− I0 (3.26)

Newton developed a method stating that the zero point of a functions derivative (i.e. the tangent) at a given
point is nearer to the zero point of the function itself than the original point. In mathematical terms this
means to linearise the function f at a starting value V (0).

f
(

V (0) +∆V
)
≈ f

(
V (0)

)
+

∂ f (V )
∂V

∣∣∣∣
V (0)
·∆V with ∆V = V (1)−V (0) (3.27)

Setting f (V (1)) = 0 gives

V (1) = V (0)−
f
(

V (0)
)

∂ f (V )
∂V

∣∣∣∣
V (0)

(3.28)
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or in the general case with m being the number of iteration

V (m+1) = V (m)−
f
(

V (m)
)

∂ f (V )
∂V

∣∣∣∣
V (m)

(3.29)

This must be computed until V (m+1) and V (m) differ less than a certain barrier.∣∣∣V (m+1)−V (m)
∣∣∣< εabs + εrel ·

∣∣∣V (m)
∣∣∣ (3.30)

With very small εabs the iteration would break too early and for little εrel values the iteration aims to a
useless precision for large absolute values of V .

Figure 3.3: Newton-Raphson method for example circuit

With this theoretical background it is now possible to step back to eq. (3.26) being the determining equation
for the example circuit. With

g(m)
d =

∂Id

∂V

∣∣∣∣
V (m)

=
IS

VT
·e

V (m)
VT (3.31)

and
∂ f (V )

∂V

∣∣∣∣
V (m)

=
1
R

+g(m)
d (3.32)

the eq. (3.29) can be written as(
g(m)

d +
1
R

)
·V (m+1) = I0−

(
I(m)
d −g(m)

d ·V
(m)
)

(3.33)

when the expression

f
(

V (m)
)

=
1
R
·V (m) + I(m)

d − I0 (3.34)

based upon eq. (3.26) is taken into account. Comparing the introductory MNA equation system in eq.
(3.23) with eq. (3.33) proposes the following equivalent circuit for the diode model.
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Figure 3.4: accompanied equivalent circuit for intrinsic diode

With
Ieq = I(m)

d −g(m)
d ·V

(m) (3.35)

the MNA matrix entries can finally be written as[
gd −gd
−gd gd

]
·
[
V1
V2

]
=
[
−Ieq
Ieq

]
(3.36)

In analog ways all controlled current sources with non-linear current-voltage dependency built into diodes
and transistors can be modeled. The left hand side of the MNA matrix (the A matrix) is called Jacobian
matrix which is going to be build in each iteration step. For the solution vector x possibly containing
currents as well when voltage sources are in place a likely convergence criteria as defined in eq. (3.30)
must be defined for the currents.

Having understood the one-dimensional example, it is now only a small step to the general multi-dimensional
algorithm: The node voltage becomes a vector V (m), factors become the corresponding matrices and dif-
ferentiations become Jacobian matrices.

The function whose zero must be found is the transformed MNA equation 3.23:

f (V (m)) = G ·V (m)− I(m)
0 (3.37)

The only difference to the linear case is that the vector I0 also contains the currents flowing out of the
non-linear components. The iteration formula of the Newton-Raphson method writes:

V (m+1) = V (m)−
(

∂ f (V )
∂V

∣∣∣∣
V (m)

)−1

· f (V (m)) (3.38)

Note that the Jacobian matrix is nothing else but the real part of the MNA matrix for the AC analysis:

J(m) =
∂ f (V )

∂V

∣∣∣∣
V (m)

= G− ∂I0

∂V

∣∣∣∣
V (m)

= G− J(m)
nl = Re(GAC) (3.39)

where the index nl denotes only the non-linear terms. Putting equation 3.39 into equation 3.38 and multi-
plying it with the Jacobian matrix leads to

J(m) ·V (m+1) = J(m) ·V (m)− f (V (m)) (3.40)

=
(

G− J(m)
nl

)
·V (m)−G ·V (m) + I(m)

0 (3.41)

=−J(m)
nl ·V

(m) + I(m)
0 (3.42)

So, bringing the Jacobian back to the right side results in the new iteration formula:

V (m+1) =
(

J(m)
)−1
·
(
−J(m)

nl ·V
(m) + I(m)

0

)
(3.43)

The negative sign in front of Jnl is due to the definition of I0 flowing out of the component. Note that I(m)
0

still contains contributions of linear and non-linear current sources.
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3.3.2 Convergence
Numerical as well as convergence problems occur during the Newton-Raphson iterations when dealing
with non-linear device curves as they are used to model the DC behaviour of diodes and transistors.

Linearising the exponential diode eq. (3.48) in the forward region a numerical overflow can occur. The
diagram in fig. 3.5 visualises this situation. Starting with V (0) the next iteration value gets V (1) which
results in an indefinite large diode current. It can be limited by iterating in current instead of voltage when
the computed voltage exceeds a certain value.

How this works is going to be explained using the diode model shown in fig. 3.4. When iterating in voltage
(as normally done) the new diode current is

Î(m+1)
d = g(m)

d

(
V̂ (m+1)−V (m)

)
+ I(m)

d (3.44)

The computed value V̂ (m+1) in iteration step m + 1 is not going to be used for the following step when
V (m) exceeds the critical voltage VCRIT which gets explained in the below paragraphs. Instead, the value
resulting from

I(m+1)
d = IS ·

(
e

V (m+1)
nVT −1

)
(3.45)

is used (i.e. iterating in current). With

Î(m+1)
d

!
= I(m+1)

d and g(m)
d =

IS

n ·VT
·e

V (m)
n·VT (3.46)

the new voltage can be written as

V (m+1) = V (m) +nVT · ln

(
V̂ (m+1)−V (m)

nVT
+1

)
(3.47)

Proceeding from Shockley’s simplified diode equation the critical voltage is going to be defined. The
explained algorithm can be used for all exponential DC equations used in diodes and transistors.

I (V ) = IS ·
(

e
V

nVT −1
)

(3.48)

y(x) = f (x) (3.49)
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Figure 3.5: numerical problem with Newton-Raphson algorithm

The critical voltage VCRIT is the voltage where the curve radius of eq. (3.48) has its minimum with I and V
having equally units. The curve radius R for the explicit definition in eq. (3.49) can be written as

R =

∣∣∣∣∣∣∣∣∣∣∣

(
1+
(

dy
dx

)2
)3/2

d2y
dx2

∣∣∣∣∣∣∣∣∣∣∣
(3.50)

Finding this equations minimum requires the derivative.

dR
dx

=

d2y
dx2 ·

3
2

(
1+
(

dy
dx

)2
)1/2

·2 · dy
dx
· d

2y
dx2 −

(
1+
(

dy
dx

)2
)3/2

· d
3y

dx3(
d2y
dx2

)2 (3.51)

The diagram in fig. 3.6 shows the graphs of eq. (3.50) and eq. (3.51) with n = 1, IS = 100nA and
VT = 25mV.
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Figure 3.6: curve radius of exponential diode curve and its derivative

With the following higher derivatives of eq. (3.48)

dI (V )
dV

=
IS

nVT
·e

V
nVT (3.52)

d2I (V )
dV 2 =

IS

n2V 2
T
·e

V
nVT (3.53)

d3I (V )
dV 3 =

IS

n3V 3
T
·e

V
nVT (3.54)

the critical voltage results in

dR
dx

!
= 0 = 3− n2V 2

T

I2
S
·e−2 V

nVT −1 → VCRIT = nVT · ln
(

nVT

IS
√

2

)
(3.55)

In order to avoid numerical errors a minimum value of the pn-junction’s derivative (i.e. the currents tangent
in the operating point) gmin is defined. On the one hand this avoids very large deviations of the appropriate
voltage in the next iteration step in the backward region of the pn-junction and on the other hand it avoids
indefinite large voltages if gd itself suffers from numerical errors and approaches zero.

The quadratic input I-V curve of field-effect transistors as well as the output characteristics of these devices
can be handled in similar ways. The limiting (and thereby improving the convergence behaviour) algorithm
must somehow ensure that the current and/or voltage deviation from one iteration step to the next step is not
too a large value. Because of the wide range of existing variations how these curves are exactly modeled
there is no standard strategy to achieve this. Anyway, the threshold voltage VT h should play an important
role as well as the direction which the current iteration step follows.

3.4 Overall solution algorithm for DC Analysis
In this section an overall solution algorithm for a DC analysis for linear as well as non-linear networks is
given. With non-linear network elements at hand the Newton-Raphson (NR) algorithm is applied.
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Figure 3.7: DC solution algorithm flow chart

The algorithm shown in fig. 3.7 has been proved to be able to find DC solutions for a large variety of
networks. It must be said that the application of any of the fallback convergence helpers indicates a nearly
or definitely singular equation system (e.g. floating nodes or overdetermining sources). The convergence
problems are either due to an apparently “wrong” network topology or to the model implementation of non-
linear components. For some of the problems also refer to the facts mentioned in section 15.2 on page 199.
In some cases it may even occur that tiny numerical inaccuracies lead to non-convergences whereas the
choice of a more accurate (but probably slower) equation system solver can help. With network topologies
having more than a single stable solution (e.g. bistable flip-flops) it is recommended to apply nodesets, i.e.
forcing the Newton-Raphson iteration into a certain direction by initial values.

When having problems to get a circuit have its DC solution the following actions can be taken to solve
these problems.

• check circuit topology (e.g. floating nodes or overdetermining sources)

• check model parameters of non-linear components

• apply nodesets

• choose a more accurate equation system solver

• relax the convergence tolerances if possible

• increase the maximum iteration count

• choose the prefered fallback algorithm
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The presented concepts are common to most circuit simulators each having to face the mentioned aspects.
And probably facing it in a different manner with more or less big differences in their implementation
details especially regarding the (fallback) convergence helpers. None of the algorithms based on Newton-
Raphson ensures global convergence, thus very few documents have been published either for the complex-
ity of the topic or for uncertainties in the detailed implementation each carrying the attribute “can help” or
“may help”.

So for now the application of a circuit simulator to find the DC solution of a given network sometimes
keeps being a task for people knowing what they want to achieve and what they can roughly expect.
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Chapter 4

AC Analysis

The AC analysis is a small signal analysis in the frequency domain. Basically this type of simulation uses
the same algorithms as the DC analysis (section 3.1 on page 25). The AC analysis is a linear modified
nodal analysis. Thus no iterative process is necessary. With the Y-matrix of the components, i.e. now a
complex matrix, and the appropriate extensions it is necessary to solve the equation system (4.1) similar to
the (linear) DC analysis.

[A] · [x] = [z] with A =
[
Y B
C D

]
(4.1)

Non-linear components have to be linearized at the DC bias point. That is, before an AC simulation with
non-linear components can be performed, a DC simulation must be completed successfully. Then, the
MNA stamp of the non-linear components equals their entries of the Jacobian matrix, which was already
computed during the DC simulation. In addition to this real-valued elements, a further stamp has to be
applied: The Jacobian matrix of the non-linear charges multiplied by jω (see also section 10.7).
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Chapter 5

AC Noise Analysis

5.1 Definitions
First some definition must be done:

Reciprocal Networks:
Two networks A and B are reciprocal to each other if their transimpedances have the following relation:

Zmn,A = Znm,B (5.1)

That means: Drive the current I into node n of circuit A and at node m the voltage I ·Zmn,A appears. In
circuit B it is just the way around.

Adjoint Networks:
Network A and network B are adjoint to each other if the following equation holds for their MNA matrices:

[A]T = [B] (5.2)

5.2 The Algorithm
To calculate the small signal noise of a circuit, the AC noise analysis has to be applied [6]. This technique
uses the principle of the AC analysis described in chapter 4 on page 39. In addition to the MNA matrix A
one needs the noise current correlation matrix CY of the circuit, that contains the equivalent noise current
sources for every node on its main diagonal and their correlation on the other positions.

The basic concept of the AC noise analysis is as follows: The noise voltage at node i should be calculated,
so the voltage arising due to the noise source at node j is calculated first. This has to be done for every
n nodes and after that adding all the noise voltages (by paying attention to their correlation) leads to the
overall voltage. But that would mean to solve the MNA equation n times. Fortunately there is a more easy
way. One can perform the above-mentioned n steps in one single step, if the reciprocal MNA matrix is
used. This matrix equals the MNA matrix itself, if the network is reciprocal. A network that only contains
resistors, capacitors, inductors, gyrators and transformers is reciprocal.

The question that needs to be answered now is: How to get the reciprocal MNA matrix for an arbitrary
network? This is equivalent to the question: How to get the MNA matrix of the adjoint network. The
answer is quite simple: Just transpose the MNA matrix!
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For any network, calculating the noise voltage at node i is done by the following three steps:

1. Solving MNA equation: [A]T · [x] = [A]T ·
[

v
j

]
=



0
...
0
−1
0
...
0


← i-th row (5.3)

2. Creating noise correlation matrix: (CY ) (5.4)

3. Calculating noise voltage: vnoise,i =
√

[v]T · (CY ) · [v]∗ (5.5)

If the correlation between several noise voltages is also wanted, the procedure is straight forward: Perform
step 1 for every desired node, put the results into a matrix and replace the vector [v] in step 3 by this
matrix. This results in the complete correlation matrix. Indeed, the above-mentioned algorithm is only a
specialisation of transforming the noise correlation matrices (see section 2.4.2).

If the normal AC analysis has already be done with LU decomposition, then the most time consuming work
of step 1 has already be done.

instead of Y = L ·U we have Y T = UT ·LT (5.6)

I.e. UT becomes the new L matrix and LT becomes the new U matrix, and the matrix equation do not need
to be solved again, because only the right-hand side was changed. So altogether this is a quickly done task.
(Note that in step 3, only the subvector [v] of vector [x] is used. See section 3.1.3 for details on this.)

If the noise voltage at another node needs to be known, only the right-hand side of step 1 changes. That is,
a new LU decomposition is not needed.

Reusing the LU decomposed MNA matrix of the usual AC analysis is possible if there has been no pivoting
necessary during the decomposition.

When using either Crout’s or Doolittle’s definition of the LU decomposition during the AC analysis the
decomposition representation changes during the AC noise analysis as the matrix A gets transposed. This
means:

A = L ·U with L =


l11 0 . . . 0

l21 l22
. . .

...
...

. . . 0
ln1 . . . . . . lnn

 and U =


1 u12 . . . u1n

0 1
...

...
. . . . . .

...
0 . . . 0 1

 (5.7)

becomes

AT = UT ·LT with L =


1 0 . . . 0

l21 1
. . .

...
...

. . . 0
ln1 . . . . . . 1

 and U =


u11 u12 . . . u1n

0 u22
...

...
. . . . . .

...
0 . . . 0 unn

 (5.8)

Thus the forward substitution (as described in section 15.2.4) and the backward substitution (as described
in section 15.2.4) must be slightly modified.

yi = zi−
i−1

∑
k=1

yk · lik i = 1, . . . ,n (5.9)

41



xi =
yi

uii
−

n

∑
k=i+1

xk ·
uik

uii
i = n, . . . ,1 (5.10)

Now the diagonal elements lii can be neglected in the forward substitution but the uii elements must be
considered in the backward substitution.

5.2.1 A Simple Example
The network that is depicted in figure 5.1 is given. The MNA equation is (see chapter 3.1):

[A] · [x] =
[

1/R1 0
G 1/R2

]
·
[
V1
V2

]
=
[

0
0

]
(5.11)

Figure 5.1: simple non-reciprocal network

Because of the controlled current source, the circuit is not reciprocal. The noise voltage at node 2 is the one
to search for. Yes, this is very easy to calculate, because it is a simple example, but the algorithm described
above should be used. This can be achived by solving the equations[

1/R1 0
G 1/R2

]
·
[

Z11
Z21

]
=
[
−1
0

]
(5.12)

and [
1/R1 0

G 1/R2

]
·
[

Z12
Z22

]
=
[

0
−1

]
(5.13)

So, the MNA matrix must be solved two times: First to get the transimpedance from node 1 to node 2 (i.e.
Z21) and second to get the transimpedance from node 2 to node 2 (i.e. Z22). But why solving it two times,
if only one voltage should be calculated? With every step transimpedances are calculated that are not need.
Is there no more effective way?

Fortunately, there is Tellegen’s Theorem: A network and its adjoint network are reciprocal to each other.
That is, transposing the MNA matrix leads to the one of the reciprocal network. To check it out:

[A]T · [x] =
[

1/R1 G
0 1/R2

]
·
[
V1
V2

]
=
[

0
0

]
(5.14)
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Figure 5.2: simple network to compare with adjoint network

Compare the transposed matrix with the reciprocal network in figure 5.2. It is true! But now it is:[
1/R1 G

0 1/R2

]
·
[

Z12,reciprocal
Z22,reciprocal

]
=
[

1/R1 G
0 1/R2

]
·
[

Z21
Z22

]
=
[

0
−1

]
(5.15)

Because Z21 of the original network equals Z12 of the reciprocal network, the one step delivers exactly what
is needed. So the next step is:

([A]T )−1 ·
[

0
−1

]
=
[

R1 −G ·R1 ·R2
0 R2

]
·
[

0
−1

]
=
[

G ·R1 ·R2
−R2

]
=
[

Z21
Z22

]
(5.16)

Now, as the transimpedances are known, the noise voltage at node 2 can be computed. As there is no
correlation, it writes as follows:

< v2
node2 > = < v2

R1,node2 > + < v2
R2,node2 > (5.17)

= < i2R1 > ·Z21 ·Z∗21+ < i2R2 > ·Z22 ·Z∗22 (5.18)

=
4 ·k ·T ·∆ f

R1
·(G ·R1 ·R2)2 +

4 ·k ·T ·∆ f
R2

·(−R2)2 (5.19)

= 4 ·k ·T ·∆ f ·
(
R1 ·(G ·R2)2 +R2

)
(5.20)

That’s it. Yes, this could have be computed more easily, but now the universal algorithm is also clear.

5.3 Noise Current Correlation Matrix
The sections 9 and 10 show the noise current correlation matrices of noisy components. The equations are
built for RMS noise currents with 1Hz bandwidth.
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Chapter 6

Transient Analysis

The transient simulation is the calculation of a networks response on arbitrary excitations. The results are
network quantities (branch currents and node voltages) as a function of time. Substantial for the transient
analysis is the consideration of energy storing components, i.e. inductors and capacitors.

The relations between current and voltage of ideal capacitors and inductors are given by

VC(t) =
1
C

Z
IC(t) ·dt and IL(t) =

1
L

Z
VL(t) ·dt (6.1)

or in terms of differential equations

IC(t) = C · dVC

dt
and VL(t) = L · dIL

dt
(6.2)

To calculate these quantities in a computer program numerical integration methods are required. With the
current-voltage relations of these components at hand it is possible to apply the modified nodal analysis
algorithm in order to calculate the networks response. This means the transient analysis attempts to find an
approximation to the analytical solution at discrete time points using numeric integration.

6.1 Integration methods
The following differential equation is going to be solved.

dx
dt

= ẋ(t) = f (x, t) (6.3)

This differential equation is transformed into an algorithm-dependent finite difference equation by quan-
tizing and replacing

ẋ(t) = lim
h→0

x(t +h)− x(t)
h

(6.4)

by the following equation.

ẋn =
xn+1− xn

hn (6.5)

There are several linear single- and multi-step numerical integration methods available, each having ad-
vantages and disadvantages concerning aspects of stability and accuracy. Integration methods can also be
classified into implicit and explicit methods. Explicit methods are inexpensive per step but limited in stabil-
ity and therefore not used in the field of circuit simulation to obtain a correct and stable solution. Implicit
methods are more expensive per step, have better stability and therefore suitable for circuit simulation.
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6.1.1 Properties of numerical integration methods
Beforehand some definitions and explanations regarding the terms often used in the following sections are
made in order to avoid bigger confusions later on.

• step size
The step size is defined by the arguments difference of successive solution vectors, i.e. the time step
hn during transient analysis with n being the n-th integration step.

hn = tn+1− tn (6.6)

• order
The order k of an integration method is defined as follows: With two successive solution vectors
xn+1 and xn given, the successor xn+1 can be expressed by xn by a finite Taylor series. The order of
an integrations method equals the power of the step size up to which the approximate solution of the
Taylor series differs less than xn from the true solution xn+1.

• truncation error
The truncation error εT depends on the order k of the integration method and results from the re-
mainder term of the Taylor series.

• stability
In order to obtain an accurate network solution integration methods are required to be stable for a
given step size h. Various stability definitions exist. This property is explained more in detail in the
following sections. Basically it determines the usability of an integration algorithm.

• single- and multistep methods
Single step methods only use xn in order to calculate xn+1, multi step methods use xi with 0≤ i < n.

• implicit and explicit methods
When using explicit integration methods the evaluation of the integration formula is sufficient for
each integration step. With implicit methods at hand it is necessary to solve an equation system (with
non-linear networks a non-linear equation system) because for the calculation of xn+1, apart from xn

and ẋn, also ẋn+1 is used. For the transient analysis of electrical networks the implicit methods are
better qualified than the explicit methods.

6.1.2 Elementary Methods
Implicit Euler Method (Backward Euler)

In the implicit Euler method the right hand side of eq. (6.3) is substituted by f (xn+1, tn+1) which yields

f (x, t) = f (xn+1, tn+1) → xn+1 = xn +hn · f (xn+1, tn+1) (6.7)

The backward euler integration method is a first order single-step method.

Explicit Euler Method (Forward Euler)

In the explicit Euler method the right hand side of eq. (6.3) is substituted by f (xn, tn) which yields

f (x, t) = f (xn, tn) → xn+1 = xn +hn · f (xn, tn) (6.8)

The explicit Euler method has stability problems. The step size is limited by stability. In general explicit
time marching integration methods are not suitable for circuit analysis where computation with large steps
may be necessary when the solution changes slowly (i.e. when the accuracy does not require small steps).
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Trapezoidal method

For the bilinear (also called trapezoidal) integration method f (x, t) is substituted by

f (x, t) =
1
2
·
(

f (xn+1, tn+1)+ f (xn, tn)
)

(6.9)

which yields

xn+1 = xn +
hn

2
·
(

f (xn+1, tn+1)+ f (xn, tn)
)

(6.10)

In each integration step the average value of the intervals beginning and end is taken into account. The
trapezoidal rule integration method is a second order single-step method. There is no more accurate second
order integration method than the trapezoidal method.

forward-euler backward-euler trapezoidal

6.1.3 Linear Multistep Methods
For higher order multi-step integration methods the general purpose method of resolution for the equation
ẋ = f (x, t)

xn+1 =
p

∑
i=0

ai ·xn−i +h
p

∑
i=−1

bi · f (xn−i, tn−i) (6.11)

is used. With b−1 = 0 the method is explicit and therefore not suitable for obtaining the correct and stable
solution. When b−1 6= 0 the method is implicit and suitable for circuit simulation, i.e. suitable for solving
stiff problems. For differential equation systems describing electrical networks the eigenvalues strongly
vary. These kind of differential equation systems are called stiff.

For a polynom of order k the number of required coefficients is

2p+3≥ k +1 (6.12)

The 2p+3 coeffcients are choosen to satisfy

xn+1 = x(tn+1) (6.13)

This can be achieved by the following equation system

p

∑
i=0

ai = 1

p

∑
i=1

(−i) jai + j
p

∑
i=−1

(−i) j−1bi = 1 for j = 1 . . .k
(6.14)

The different linear multistep integration methods which can be constructed by the equation system (6.14)
vary in the equality condition corresponding with (6.12) and the choice of coefficients which are set to
zero.
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Gear

The Gear [7] formulae (also called BDF - backward differentiation formulae) have great importance within
the multi-step integration methods used in transient analysis programs. The conditions

p = k−1 and b0 = b1 = . . . = bk−1 = 0 (6.15)

due to the following equation system
0 1 1 1 1
1 0 −1 −2 −3
2 0 1 4 9
3 0 −1 −8 −27
4 0 1 16 81

 ·


b−1
a0
a1
a2
a3

=


1
1
1
1
1

 (6.16)

for the Gear formulae of order 4. Order k = 1 yields the implicit Euler method. The example given in the
equation system (6.16) results in the following integration formula.

xn+1 = a0 ·xn +a1 ·xn−1 +a2 ·xn−2 +a3 ·xn−3 +h ·b−1 · f (xn+1, tn+1)

=
48
25
·xn− 36

25
·xn−1 +

16
25
·xn−2− 3

25
·xn−3 +h · 12

25
· f (xn+1, tn+1)

(6.17)

There is no more stable second order integration method than the Gear’s method of second order. Only
implicit Gear methods with order k ≤ 6 are zero stable.

Adams-Bashford

The Adams-Bashford algorithm is an explicit multi-step integration method whence

p = k−1 and a1 = a2 = . . . = ak−1 = 0 and b−1 = 0 (6.18)

is set to satisfy the equation system (6.14). The equation system of the Adams-Bashford coefficients of
order 4 is as follows. 

1 0 0 0 0
0 1 1 1 1
0 0 −2 −4 −6
0 0 3 12 27
0 0 −4 −32 −108

 ·


a0
b0
b1
b2
b3

=


1
1
1
1
1

 (6.19)

This equation system results in the following integration formula.

xn+1 = a0 ·xn +h ·b0 · f n +h ·b1 · f n−1 +h ·b2 · f n−2 +h ·b3 · f n−3

= xn +h · 55
24
· f n−h · 59

24
· f n−1 +h · 37

24
· f n−2−h · 9

24
· f n−3

(6.20)

The Adams-Bashford formula of order 1 yields the (explicit) forward Euler integration method.

Adams-Moulton

The Adams-Moulton algorithm is an implicit multi-step integration method whence

p = k−2 and a1 = a2 = . . . = ak−2 = 0 (6.21)

is set to satisfy the equation system (6.14). The equation system of the Adams-Moulton coefficients of
order 4 is as follows. 

1 0 0 0 0
0 1 1 1 1
0 2 0 −2 −4
0 3 0 3 12
0 4 0 −4 −32

 ·


a0
b−1
b0
b1
b2

=


1
1
1
1
1

 (6.22)
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This equation system results in the following integration formula.

xn+1 = a0 ·xn +h ·b−1 · f n+1 +h ·b0 · f n +h ·b1 · f n−1 +h ·b2 · f n−2

= xn +h · 9
24
· f n+1 +h · 19

24
· f n−h · 5

24
· f n−1 +h · 1

24
· f n−2

(6.23)

The Adams-Moulton formula of order 1 yields the (implicit) backward Euler integration method and the
formula of order 2 yields the trapezoidal rule.

6.1.4 Stability considerations
When evaluating the numerical formulations given for both implicit and explicit integration formulas once
rounding errors are unavoidable. For small values of h the evaluation must be repeated very often and thus
the rounding error possibly accumulates. With higher order algorithms it is possible to enlarge the step
width and thereby reduce the error accumulation.

On the other hand it is questionable whether the construction of implicit algorithms is really valuable
because of the higher computation effort caused by the necessary iteration (indices n+1 on both sides of the
equation). In practice there is a class of differential equations which can be reasonably handled by implicit
algorithms where explicit algorithms completely fail because of the impracticable reduction of the step
width. This class of differential equations are called stiff problems. The effect of stiffness causes for small
variations in the actual solution to be computed very large deviations in the solution which get damped.

The numerical methods used for the transient analysis are required to be stiffly stable and accurate as well.
The regions requirements in the complex plane are visualized in the following figure.

Figure 6.1: stability requirements for stiff differential equation systems

For values of hλ in region II the numerical method must be stable and accurate, in region I accurate and in
region III only stable. The area outside the specified regions are of no particular interest.

For the stability prediction of integration algorithms with regard to nonlinear differential equations and
equation systems the simple and linear test differential equation

ẋ = λx with λ ∈ C,Re{λ}< 0,x≥ 0 (6.24)
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is used. The condition Re{λ} < 0 ensures the solution to be decreasing. The general purpose method of
resolution given in (6.11) can be solved by the polynomial method setting

xk = zk with z ∈ C (6.25)

Thus we get the characteristic polynom

ϕ(z) = ρ(z)+hλ ·η(z) = 0 (6.26)

=
n−1

∑
i=−1

ai ·zn−i +hλ

n−1

∑
i=−1

bi ·zn−i (6.27)

Because of the conditions defined by (6.14) the above eq. (6.26) can only be true for

|z|< 1 (6.28)

which describes the inner unity circle on the complex plane. In order to compute the boundary of the area
of absolute stability it is necessary to calculate

µ(z) = hλ =−ρ(z)
η(z)

with z = e jϑ,0≤ ϑ≤ 2π (6.29)

These equations describe closed loops. The inner of these loops describe the area of absolute stability.
Because λ ≤ 0 and h ≥ 0 only the left half of the complex plane is of particular interest. An integration
algorithm is call zero-stable if the stability area encloses µ = 0. Given this condition the algorithm is as a
matter of principle usable, otherwise not. If an algorithms stability area encloses the whole left half plane
it is called A-stable. A-stable algorithms are stable for any h and all λ < 0. Any other kind of stability area
introduces certain restrictions for µ.

Figure 6.2: areas of absolute stability for order 1. . . 6 Gear formulae
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Figure 6.3: areas of absolute stability for order 1. . . 6 Adams-Moulton formulae

Figure 6.4: areas of absolute stability for order 1. . . 6 Adams-Bashford formulae
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The figures 6.2, 6.3 and 6.4 visualize the evaluation of eq. (6.29) for the discussed integration methods. All
of the implicit formulae are zero-stable, thus principally usable. The (implicit) backward Euler, Gear order
2 and the trapezoidal integration methods are A-stable. Fig. 6.2 shows why the Gear formulae are of such
great importance for the transient analysis of electrical networks. With least restrictions for µ they can be
stabilized.

6.2 Predictor-corrector methods
In section 6.1 on pages 44 ff. various integration methods have been discussed. The elementary as well as
linear multistep methods (in order to get more accurate methods) always assumed a−1 =−1 in its general
form. Explicit methods were encountered by b−1 = 0 and implicit methods by b−1 6= 0. Implicit methods
have been shown to have a limited area of stability and explicit methods to have a larger range of stability.
With increasing order k the linear multistep methods interval of absolute stability (intersection of the area of
absolute stability in the complex plane with the real axis) decreases except for the implicit Gear formulae.

For these given reasons implicit methods can be used to obtain solutions of ordinary differential equation
systems describing so called stiff problems. Now considering e.g. the implicit Adams-Moulton formulae
of order 3

xn+1 = xn +h · 5
12
· f n+1 +h · 8

12
· f n−h · 1

12
· f n−1 (6.30)

clarifies that f n+1 is necessary to calculate xn+1 (and the other way around as well). Every implicit integra-
tion method has this particular property. The above equation can be solved using iteration. This iteration
is said to be convergent if the integration method is consistent and zero-stable. A linear multistep method
that is at least first-order is called a consistent method. Zero-stability and consistency are necessary for
convergence. The converse is also true.

The iteration introduces a second index m.

xn+1,m+1 = xn +h · 5
12
· f n+1,m +h · 8

12
· f n−h · 1

12
· f n−1 (6.31)

This iteration will converge for an arbitrary initial guess xn+1,0 only limited by the step size h. In practice
successive iterations are processed unless∣∣xn+1,m+1− xn+1,m∣∣< εabs + εrel ·

∣∣xn+1,m∣∣ (6.32)

The disadvantage for this method is that the number of iterations until it converges is unknown. Alterna-
tively it is possible to use a fixed number of correction steps. A cheap way of providing a good initial guess
xn+1,0 is using an explicit integration method, e.g. the Adams-Bashford formula of order 3.

xn+1,0 = xn +h · 23
12
· f n−h · 16

12
· f n−1 +h · 5

12
· f n−2 (6.33)

Equation (6.33) requires no iteration process and can be used to obtain the initial guess. The combination
of evaluating a single explicit integration method (the predictor step) in order to provide a good initial
guess for the successive evaluation of an implicit method (the corrector step) using iteration is called
predictor-corrector method. The motivation using an implicit integration method is its fitness for solving
stiff problems. The explicit method (though possibly unstable) is used to provide a good initial guess for
the corrector steps.

6.2.1 Order and local truncation error
The order of an integration method results from the truncation error εT which is defined as

εT = x
(
tn+1)− xn+1 (6.34)
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meaning the deviation of the exact solution x
(
tn+1

)
from the approximate solution xn+1 obtained by the

integration method. For explicit integration methods with b−1 = 0 the local truncation error εLT E yields

εLT E = x
(
tn+1)− xn+1 (6.35)

and for implicit integration methods with b−1 6= 0 it is

εLT E ≈ x
(
tn+1)− xn+1 (6.36)

Going into equation (6.11) and setting a−1 =−1 the truncation error is defined as

εLT E =
p

∑
i=−1

ai ·x
(
tn−i)+h

p

∑
i=−1

bi · f (x
(
tn−i) , tn−i) (6.37)

With the Taylor series expansions

x
(
tn+i)= x(tn)+

(ih)
1!

ẋ(tn)+
(ih)2

2!
ẍ(tn)+ . . . (6.38)

f (x
(
tn+i) , tn+i) = ẋ

(
tn+i)= ẋ(tn)+

(ih)
1!

ẍ(tn)+
(ih)2

2!
...x (tn)+ . . . (6.39)

the local truncation error as defined by eq. (6.37) can be written as

εLT E = C0 ·x(tn)+C1h · ẋ(tn)+C2h2 · ẍ(tn)+ . . . (6.40)

The error terms C0, C1 and C2 in their general form can then be expressed by the following equation.

Cq =− 1
q!
·

p−1

∑
i=−1

ai · (p− i)q− 1
(q−1)!

p−1

∑
i=−1

bi · (p− i)q−1 (6.41)

A linear multistep integration method is of order k if

εLT E = Ck+1 ·hk+1 ·x(k+1) (tn)+O
(

hk+2
)

(6.42)

The error constant Ck+1 of an p-step integration method of order k is then defined as

Ck+1 =− 1
(k +1)!

·
p−1

∑
i=−1

ai · (p− i)k+1− 1
k!

p−1

∑
i=−1

bi · (p− i)k (6.43)

The practical computation of these error constants is now going to be explained using the Adams-Moulton
formula of order 3 given by eq. (6.30). For this third order method with a−1 = −1, a0 = 1, b−1 = 5/12,
b0 = 8/12 and b1 =−1/12 the following values are obtained using eq. (6.41).

C0 =− 1
0!
·
(
−1 ·20 +1 ·10)= 0 (6.44)

C1 =− 1
1!
·
(
−1 ·21 +1 ·11)− 1

0!
·
(

5
12

20 +
8

12
10− 1

12
00
)

= 0 (6.45)

C2 =− 1
2!
·
(
−1 ·22 +1 ·12)− 1

1!
·
(

5
12

21 +
8

12
11− 1

12
01
)

= 0 (6.46)

C3 =− 1
3!
·
(
−1 ·23 +1 ·13)− 1

2!
·
(

5
12

22 +
8

12
12− 1

12
02
)

= 0 (6.47)

C4 =− 1
4!
·
(
−1 ·24 +1 ·14)− 1

3!
·
(

5
12

23 +
8

12
13− 1

12
03
)

=− 1
24

(6.48)

In similar ways it can be verified for each of the discussed linear multistep integration methods that

Cp = 0 ∀ 0≤ p≤ k (6.49)

The following table summarizes the error constants for the implicit Gear formulae (also called BDF -
backward differention formulae).
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implicit Gear formulae (BDF)
steps n 1 2 3 4 5 6

order k 1 2 3 4 5 6

error constant Ck+1 −1
2
−2

9
− 3

22
− 12

125
− 10

137
− 20

343

The following table summarizes the error constants for the explicit Gear formulae.

explicit Gear formulae
steps n 2 3 4 5 6 7

order k 1 2 3 4 5 6
error constant Ck+1 +1 +1 +1 +1 +1 +1

The following table summarizes the error constants for the explicit Adams-Bashford formulae.

explicit Adams-Bashford
steps n 1 2 3 4 5 6

order k 1 2 3 4 5 6

error constant Ck+1
1
2

5
12

3
8

251
720

95
288

19087
60480

The following table summarizes the error constants for the implicit Adams-Moulton formulae.

implicit Adams-Moulton
steps n 1 1 2 3 4 5

order k 1 2 3 4 5 6

error constant Ck+1 −1
2
− 1

12
− 1

24
− 19

720
− 3

160
− 863

60480

6.2.2 Milne’s estimate
The locale truncation error of the predictor of order k∗ may be defined as

ε
∗
LT E = C∗k∗+1 ·hk∗+1 ·x(k∗+1) (tn)+O

(
hk∗+2

)
(6.50)

and that of the corresponding corrector method of order k

εLT E = Ck+1 ·hk+1 ·x(k+1) (tn)+O
(

hk+2
)

(6.51)

If a predictor and a corrector method with same orders k = k∗ are used the locale truncation error of the
predictor-corrector method yields

εLT E ≈
Ck+1

C∗k+1−Ck+1
·
(
xn+1,m− xn+1,0) (6.52)

This approximation is called Milne’s estimate.

6.2.3 Adaptive step-size control
For all numerical integration methods used for the transient analysis of electrical networks the choice of a
proper step-size is essential. If the step-size is too large, the results become inaccurate or even completely
wrong when the region of absolute stability is left. And if the step-size is too small the calculation requires
more time than necessary without raising the accuracy. Usually a chosen initial step-size cannot be used
overall the requested time of calculation.
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Basically a step-size h is chosen such that

εLT E < εabs + εrel ·
∣∣xn+1,m∣∣ (6.53)

Forming a step-error quotient
q =

εLT E

εabs + εrel · |xn+1,m|
(6.54)

yields the following algorithm for the step-size control. The initial step size h0 is chosen sufficiently small.
After each integration step every step-error quotient gets computed and the largest qmax is then checked.

If qmax > 1, then a reduction of the current step-size is necessary. As new step-size the following expression
is used

hn =
(

ε

qmax

) 1
k+1
·hn (6.55)

with k denoting the order of the corrector-predictor method and ε < 1 (e.g. ≈ 0.8). If necessary the process
must be repeated.

If qmax > 1, then the calculated value in the current step gets accepted and the new step-size is

hn+1 =
(

ε

qmax

) 1
k+1
·hn (6.56)

6.3 Energy-storage components
As already mentioned it is essential for the transient analysis to consider the energy storing effects of
components. The following section describes how the modified nodal analysis can be used to take this into
account.

6.3.1 Capacitor
The relation between current and voltage in terms of a differential equation for an ideal capacitor is

IC(t) = C · dVC

dt
(6.57)

With
IC(V, t)

C
=

dVC

dt
= f (x, t) (6.58)

the discussed integration formulas (6.7), (6.10), (6.17) and (6.23) can be applied to the problem. Rewriting
them in an explicit form regarding the next integration current results in

In+1
C =

C
hn V n+1

C − C
hn V n

C (backward Euler) (6.59)

In+1
C =

2C
hn V n+1

C − 2C
hn V n

C − In
C (trapezoidal) (6.60)

In+1
C =

C
b−1 ·hn V n+1

C − a0 ·C
b−1 ·hn V n

C −
a1 ·C

b−1 ·hn V n−1
C − . . .− ak−1 ·C

b−1 ·hn V n−k+1
C (6.61)

In+1
C =

C
b−1 ·hn︸ ︷︷ ︸

geq

V n+1
C − a0 ·C

b−1 ·hn V n
C −

b0

b−1
In
C−

b1

b−1
In−1
C − . . .− bk−2

b−1
In−k+2
C︸ ︷︷ ︸

Ieq

(6.62)

Each of these equations can be rewritten as

In+1
C = geq ·V n+1

C + Ieq (6.63)

which leads to the following companion model representing a current source with its accompanied internal
resistance.
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Figure 6.5: companion equivalent circuit of a capacitor during transient analysis

Thus the complete MNA matrix equation for an ideal capacitance writes as follows.[
+geq −geq
−geq +geq

]
·
[
V n+1

1
V n+1

2

]
=
[
−Ieq
+Ieq

]
(6.64)

6.3.2 Inductor
The relation between current and voltage in terms of a differential equation for an ideal inductor can be
written as

VL(t) = L · dIL

dt
(6.65)

With
VL(I, t)

L
=

dIL

dt
= f (x, t) (6.66)

the discussed integration formulas (6.7), (6.10), (6.17) and (6.23) can be applied to the problem. Rewriting
them in an explicit form regarding the next integration voltage results in

V n+1
L =

L
hn In+1

L − L
hn In

L (6.67)

V n+1
L =

2L
hn In+1

L − 2L
hn In

L−V n
L (6.68)

V n+1
L =

L
b−1 ·hn In+1

L − a0 ·L
b−1 ·hn In

L−
a1 ·L

b−1 ·hn In−1
L − . . .− ak−1 ·L

b−1 ·hn In−k+1
L (6.69)

V n+1
L =

L
b−1 ·hn︸ ︷︷ ︸

req

In+1
L − a0 ·L

b−1 ·hn In
L−

b0

b−1
V n

L −
b1

b−1
V n−1

L − . . .− bk−2

b−1
V n−k+2

L︸ ︷︷ ︸
Veq

(6.70)

Each of these equations can be rewritten as

V n+1
L = req · In+1

L +Veq (6.71)

which leads to the following companion model representing a voltage source with its accompanied internal
resistance.

Figure 6.6: companion equivalent circuit of a inductor during transient analysis

Thus the complete MNA matrix equation for an ideal inductor writes as follows. 0 0 +1
0 0 −1

+1 −1 −req

 ·
V n+1

1
V n+1

2
In+1
L

=

 0
0

Veq

 (6.72)
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It is also possible to model the ideal inductor as a current source with an internal resistance which would
yield a similar equivalent circuit as for the capacitor. But with the proposed model it is possible to use
alike computation schemes for capacitors and inductors. Charges become flues, capacitances become in-
ductances and finally voltages become currents and the other way around. Everything else (especially the
coeffcients in the integration formulas) can be reused.

6.3.3 Coupled Inductors
In a non-ideal transformer, there are two (or more) coupled inductors. The model for the transient simula-
tion is not very different from the one of a single inductor. In addition to each coil, the mutal inductance
has to be counted for.

VL1 = L1 ·
dIL1

dt
+M12 ·

dIL2

dt
+ IL1 ·R1 (6.73)

with M12 = k ·
√

L1 ·L2 (6.74)
and R1 ohmic resistance of coil 1 (6.75)

So it is:

V n+1
L1 = req11 · In+1

L1 + req12 · In+1
L2 +Veq(In

L1, I
n
L2, ...) (6.76)

Note that req11 includes the ohmic resistance R1. For backward Euler, it therefore follows:

V n+1
L1 =

(
L1

hn +R1

)
︸ ︷︷ ︸

req11

· In+1
L1 +

k ·
√

L1 ·L2

hn︸ ︷︷ ︸
req12

· In+1
L2 −

(
L1

hn +R1

)
· In

L1−
k ·
√

L1 ·L2

hn · In
L2︸ ︷︷ ︸

Veq1

(6.77)

The voltage across the secondary coil V n+1
L2 goes likewise by just changing the indices. Finally, the MNA

matrix writes (port numbers are according to figure 9.2):
0 0 0 0 +1 0
0 0 0 0 0 +1
0 0 0 0 0 −1
0 0 0 0 −1 0

+1 0 0 −1 −req11 −req12
0 +1 −1 0 −req21 −req22

 ·


V n+1
1

V n+1
2

V n+1
3

V n+1
4

In+1
L1

In+1
L2

=


0
0
0
0

Veq1
Veq2

 (6.78)

These equations can also give an idea on how to model more than two coupled inductors. For three coupled
inductors, the voltage across coil 1 writes:

VL1 = L1 ·
dIL1

dt
+M12 ·

dIL2

dt
+M13 ·

dIL3

dt
+ IL1 ·R1 (6.79)

VL2 = L2 ·
dIL2

dt
+M12 ·

dIL1

dt
+M23 ·

dIL3

dt
+ IL2 ·R2 (6.80)

VL3 = L3 ·
dIL3

dt
+M13 ·

dIL1

dt
+M23 ·

dIL2

dt
+ IL3 ·R3 (6.81)

with M12 = k12 ·
√

L1 ·L2 (6.82)

and M13 = k13 ·
√

L1 ·L3 (6.83)

and M23 = k23 ·
√

L2 ·L3 (6.84)

This can be easily extended to an arbitrary number of coupled inductors.

56



6.3.4 Depletion Capacitance
For non-constant capacitances, especially depletion capacitance used in non-linear devices, instead of eq.
(6.57) the following equation holds.

IC(t) =
dQ
dt

(6.85)

With

dQ = C ·dVC and
dVC

dQ

∣∣∣∣
Q(m)

=
1
C

(6.86)

equation (3.29) can be written as

V (m+1)
C = V (m)

C −
Q
(

V (m)
C

)
C(m) (6.87)

⇒
(

V (m+1)
C −V (m)

C

)
·C(m) =−Q(m) (6.88)

yielding a similar iterative algorithm as already used for the non-linear DC analysis described in section
3.3.1 on page 31. The indices (m) indicated the m-th Newton-Raphson iteration. With this knowledge at
hand it is possible to rewrite the explicit formula for the backward Euler integration (6.59), i.e. the next
iteration step Qm+1 is replaced by the Newton-Raphson formula as follows.

In+1,m+1
C =

Qn+1,m+1−Qn

hn

=
1
hn ·

(
Qn+1,m +Cn+1,m ·(V n+1,m+1

C −V n+1,m
C )−Qn

) (6.89)

The double indices now indicate the n-th integration step and the m-th Newton-Raphson iteration. The
same can be done for the other integration formulas and results also in a similar equivalent companion
model as shown in fig. 6.5.

The capacitance C and the charge Q within the above equations is computed according to the appropriate
(non-linear) model formulations.

Q = C0 ·

(
+

VJ ·
(

1− (1−F)1−M
)

1−M

+
1−F · (1+M)

(1−F)1+M · (VC−F ·VJ)

+
M

2 ·VJ · (1−F)1+M ·
(
V 2

C −F2 ·V 2
J
))

(6.90)

and

C =
dQ
dVC

=
C0

(1−F)M ·
(

1+
M · (VC−F ·VJ)

VJ · (1−F)

)
(6.91)

for a depletion capacitance with VC > F ·VJ and for VC < F ·VJ those capacitances yield

Q =
C0 ·VJ

1−M
·

(
1−
(

1− VC

VJ

)1−M
)

(6.92)

with

C =
dQ
dVC

= C0 ·
(

1− VC

VJ

)−M

(6.93)
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6.3.5 Diffusion Capacitance
The current through a diffusion capacitance can be approximated by

IC(t) = τD
dID

dt
(6.94)

whence τD specifies the transit time through a pn-junction. The above formula can be rewritten as

IC(t) = τD
dID

dVC
· dVC

dt
= τD ·gD ·

dVC

dt
(6.95)

which means that eq. (6.89) can be used here, too. Also the formulas for the other integration methods can
be easily rewritten and the equivalent companion model shown in fig. 6.5 is valid as well.

The capacitance C and the charge Q for a diffusion capacitance of a pn-junction according to the most
model formulations write as follows.

Q = τD · ID (6.96)

C =
dQ
dVC

= τD ·gD (6.97)

6.3.6 MOS Gate Capacitances
The MOS gate capacitances are not constant values with respect to voltages (see section 10.5.3 on page
135). The capacitance values can best be described by the incremental capacitance:

C(V ) =
dQ(V )

dV
(6.98)

where Q(V ) is the charge on the capacitor and V is the voltage across the capacitor.

The formula for calculating the differential is difficult to derive (because not given in the Meyer capacitance
model). Furthermore, the voltage is required as the accumulated capacitance over time. The timewise
charge formula is:

Q(V ) =
Z V

0
C(V ) ·dV (6.99)

And for small intervalls:

Q(V ) =
Z V n+1

V n
C(V ) ·dV (6.100)

The integral has been approximated in SPICE by:

Qn+1 =
(
V n+1−V n) ·C(V n+1)+C(V n)

2
(6.101)

This last formula is the trapezoidal rule for integration over two points. The charge is approximated as the
average capacitance times the change in voltage. If the capacitance is nonlinear, this approximation can be
in error. To estimate the charge accurately, use Simpson’s numerical integration rule. This method provides
charge conservation control.

Qn+1 =
(
V n+1−V n) ·C(V n+1)+4C(V n)+C(V n−1)

6
(6.102)
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6.4 Special time-domain models

6.4.1 AM modulated AC source
An AC voltage source in the time-domain is characterized by its frequency f , the initial phase φ and the
amplitude A. During amplitude modulation the modulation level M must be considered. The output voltage
of the source is determined by the following equation.

V1 (t)−V2 (t) = (1+M ·V3 (t)) ·A · sin(ω · t +φ) (6.103)

Figure 6.7: AM modulated AC source

The appropriate MNA matrix entries during the transient analysis decribing a simple linear operation can
be written as 

. . . 1

. . . −1

. . . 0
1 −1 −M ·A · sin(ω · t +φ) 0

 ·


V1 (t)
V2 (t)
V3 (t)
J1 (t)

=


I1 (t)
I2 (t)
I3 (t)

A · sin(ω · t +φ)

 (6.104)

6.4.2 PM modulated AC source
The phase modulated AC source is also characterized by the frequency f , the amplidude A and by an initial
phase φ. The output voltage in the time-domain is determinded by the following equation

V1 (t)−V2 (t) = A · sin(ω · t +φ+M ·V3 (t)) (6.105)

whereas M denotes the modulation index and V3 the modulating voltage.

Figure 6.8: PM modulated AC source

The component is non-linear in the frequency- as well in the time-domain. In order to prepare the source
for subsequent Newton-Raphson iterations the derivative

g =
∂(V1−V2)

∂V3
= M ·A · cos(ω · t +φ+M ·V3) (6.106)

is required. With this at hand the MNA matrix entries of the PM modulated AC voltage source during the
transient analysis can be written as

. . . +1

. . . −1

. . . 0
+1 −1 g 0

 ·


V1 (t)
V2 (t)
V3 (t)
J1 (t)

=


I1 (t)
I2 (t)
I3 (t)

g ·V3−A · sin(ω · t +φ+M ·V3)

 (6.107)
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6.5 Components defined in the frequency domain
The time-domain simulation of components defined in the frequency-domain can be performed using an
inverse Fourier transformation of the Y-parameters of the component (giving the impulse response) and an
adjacent convolution with the prior node voltages (or branch currents) of the component.

This requires a memory of the node voltages and branch currents for each component defined in the
frequency-domain. During a transient simulation the time steps are not equidistant and the maximum
required memory length Tend of a component may not correspond with the time grid produced by the time
step control (see section 6.2.3 on page 53) of the transient simulation. That is why an interpolation of exact
values (voltage or current) at a given point in time is necessary.

Components defined in the frequency-domain can be divided into two major classes.

• Components with frequency-independent (non-dispersive) delay times and with or without constant
losses.

• Components with frequency-dependent (dispersive) delay times and losses.

6.5.1 Components with frequency-independent delay times
Components with constant delay times are a special case. The impulse response corresponds to the node
voltages and/or branch currents at some prior point in time optionally multiplied with a constant loss factor.

Voltage controlled current source

With no constant delay time the MNA matrix entries of a voltage controlled current source is determined
by the following equations according to the node numbering in fig. 9.8 on page 96.

I2 =−I3 = G · (V1−V4) (6.108)

The equations yield the following MNA entries during the transient analysis.
0 0 0 0

+G 0 0 −G
−G 0 0 +G
0 0 0 0

 ·


V1
V2
V3
V4

=


I1
I2
I3
I4

 (6.109)

With a constant delay time τ eq. (6.108) rewrites as

I2 (t) =−I3 (t) = G · (V1 (t− τ)−V4 (t− τ)) (6.110)

which yields the following MNA entries during the transient analysis.
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ·


V1 (t)
V2 (t)
V3 (t)
V4 (t)

=


I1 (t)

−G · (V1 (t− τ)−V4 (t− τ))
+G · (V1 (t− τ)−V4 (t− τ))

I4 (t)

 (6.111)

Voltage controlled voltage source

The MNA matrix entries of a voltage controlled voltage source are determined by the following character-
istic equation according to the node numbering in fig. 9.10 on page 98.

V2−V3 = G · (V4−V1) (6.112)
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This equation yields the following augmented MNA matrix entries with a single extra branch equation.
0 0 0 0 0
0 0 0 0 −1
0 0 0 0 1
0 0 0 0 0
G −1 1 −G 0

 ·


V1
V2
V3
V4
J1

=


I1
I2
I3
I4
0

 (6.113)

When considering an additional constant time delay τ eq. (6.112) must be rewritten as

V2 (t)−V3 (t) = G · (V4 (t− τ)−V1 (t− τ)) (6.114)

This representation requires a change of the MNA matrix entries which now yield the following matrix
equation. 

0 0 0 0 0
0 0 0 0 −1
0 0 0 0 1
0 0 0 0 0
0 −1 1 0 0

 ·


V1 (t)
V2 (t)
V3 (t)
V4 (t)
J1 (t)

=


I1 (t)
I2 (t)
I3 (t)
I4 (t)

G · (V4 (t− τ)−V1 (t− τ))

 (6.115)

Current controlled current source

With no time delay the MNA matrix entries of a current controlled current source are determined by the
following equations according to the node numbering in fig. 9.9 on page 97.

I2 =−I3 = G · I1 =−G · I4 (6.116)
V1 = V4 (6.117)

These equations yield the following MNA matrix entries using a single extra branch equation.
0 0 0 0 1/G
0 0 0 0 1
0 0 0 0 −1
0 0 0 0 −1/G
1 0 0 −1 0

 ·


V1
V2
V3
V4
J1

=


I1
I2
I3
I4
0

 (6.118)

When additional considering a constant delay time τ eq. (6.116) must be rewritten as

I2 (t) =−I3 (t) = G · I1 (t− τ) =−G · I4 (t− τ) (6.119)

Thus the MNA matrix entries change as well yielding
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −1
1 0 0 −1 0

 ·


V1 (t)
V2 (t)
V3 (t)
V4 (t)
J1 (t)

=


I1 (t)

−G ·J1 (t− τ)
+G ·J1 (t− τ)

I4 (t)
0

 (6.120)

Current controlled voltage source

The MNA matrix entries for a current controlled voltage source are determined by the following character-
istic equations according to the node numbering in fig. 9.11 on page 98.

V2−V3 = G · I2 =−G · I3 (6.121)
V1 = V4 (6.122)
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These equations yield the following MNA matrix entries.
0 0 0 0 1 0
0 0 0 0 0 −1
0 0 0 0 0 1
0 0 0 0 −1 0
0 1 −1 0 G 0
1 0 0 −1 0 0

 ·


V1
V2
V3
V4
J1
J2

=


I1
I2
I3
I4
0
0

 (6.123)

With an additional time delay τ between the input current and the output voltage eq. (6.121) rewrites as

V2 (t)−V3 (t) = G · I2 (t− τ) =−G · I3 (t− τ) (6.124)

Due to the additional time delay the MNA matrix entries must be rewritten as follows
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 −1
0 0 0 0 −1 0
0 1 −1 0 0 0
1 0 0 −1 0 0

 ·


V1 (t)
V2 (t)
V3 (t)
V4 (t)
J1 (t)
J2 (t)

=


I1 (t)
I2 (t)
I3 (t)
I4 (t)

0
G ·J1 (t− τ)

 (6.125)

Ideal transmission line

The A-parameters of a transmission line (see eq (9.196) on page 99) are defined in the frequency domain.
The equation system formed by these parameters write as

I. V1 = V2 · cosh(γ · l)+ I2 ·ZL · sinh(γ · l) (6.126)

II. I1 = V2 ·
1

ZL
sinh(γ · l)+ I2 · cosh(γ · l) (6.127)

Figure 6.9: ideal transmission line

Applying I+ZL · II and I−ZL · II to the above equation system and using the following transformations

coshx+ sinhx =
ex + e−x

2
+

ex− e−x

2
= ex (6.128)

coshx− sinhx =
ex + e−x

2
− ex− e−x

2
= e−x (6.129)

yields

V1 = V2 ·e−γ· l +ZL ·
(

I1 + I2 ·e−γ· l
)

(6.130)

V2 = V1 ·e−γ· l +ZL ·
(

I2 + I1 ·e−γ· l
)

(6.131)

whereas γ denotes the propagation constant α + jβ, l the length of the transmission line and ZL the line
impedance.
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These equations can be transformed from the frequency domain into the time domain using the inverse
Fourier transformation. The frequency independent loss α 6= f (ω) gives the constant factor

A = e−α· l (6.132)

The only remaining frequency dependent term is

e− jβ· l = e− jω·τ with β =
ω

vph
=

ω

c0
=

ω ·τ
l

(6.133)

which yields the following transformation

f (ω) ·e−γ· l = A · f (ω) ·e− jω·τ⇐⇒ A · f (t− τ) (6.134)

All the presented time-domain models with a frequency-independent delay time are based on this simple
transformation. It can be applied since the phase velocity vph 6= f (ω) is not a function of the frequency.
This is true for all non-dispersive transmission media, e.g. air or vacuum. The given transformation can
now be applied to the eq. (6.130) and eq. (6.131) defined in the frequency-domain to obtain equations in
the time-domain.

The length Tend of the memory needed by the ideal transmission line can be easily computed by

Tend = τ =
l

vph
=

l
c0

(6.135)

whereas c0 denotes the speed of light in free space (since there is no dielectric involved during transmission)
and l the physical length of the transmission line.

The MNA matrix for a lossy (or lossless with α = 0) transmission line during the transient analysis is
augmented by two new rows and columns in order to consider the following branch equations.

V1 (t) = ZL · I1 (t)+A · (ZL · I2 (t− τ)+V2 (t− τ)) (6.136)
V2 (t) = ZL · I2 (t)+A · (ZL · I1 (t− τ)+V1 (t− τ)) (6.137)

Thus the MNA matrix entries can be written as
0 0 1 0
0 0 0 1
1 0 −ZL 0
0 1 0 −ZL

 ·


V1 (t)
V2 (t)
J1 (t)
J2 (t)

=


I1 (t)
I2 (t)

A · (V2 (t− τ)+ZL ·J2 (t− τ))
A · (V1 (t− τ)+ZL ·J1 (t− τ))

 (6.138)

with A denoting the loss factor derived from the constant (and frequency independent) line attenuation α

and the transmission line length l.

A = e−
α

2 · l (6.139)

Ideal 4-terminal transmission line

The ideal 4-terminal transmission line is a two-port as well. It differs from the 2-terminal line as shown in
fig. 6.5.1 in two new node voltages and branch currents.
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Figure 6.10: ideal 4-terminal transmission line

The differential mode of the ideal 4-terminal transmission line can be modeled by modifying the branch
eqs. (6.136) and (6.137) of the 2-terminal line which yields

V1 (t)−V4 (t) = ZL · I1 (t)+A · (ZL · I2 (t− τ)+V2 (t− τ)−V3 (t− τ)) (6.140)
V2 (t)−V3 (t) = ZL · I2 (t)+A · (ZL · I1 (t− τ)+V1 (t− τ)−V4 (t− τ)) (6.141)

Two more conventions must be indroduced

I1 (t) =−I4 (t) (6.142)
I2 (t) =−I3 (t) (6.143)

which is valid for the differential mode (i.e. the odd mode) of the transmission line and represents a kind
of current mirror on each transmission line port.

According to these consideration the MNA matrix entries during transient analysis are
. . . . 1 0
. . . . 0 1
. . . . 0 −1
. . . . −1 0
1 0 0 −1 −ZL 0
0 1 −1 0 0 −ZL

 ·


V1 (t)
V2 (t)
V3 (t)
V4 (t)
J1 (t)
J2 (t)

=


I1 (t)
I2 (t)
I3 (t)
I4 (t)

A · (V2 (t− τ)−V3 (t− τ)+ZL ·J2 (t− τ))
A · (V1 (t− τ)−V4 (t− τ)+ZL ·J1 (t− τ))

 (6.144)

Logical devices

The analogue models of logical (digital) components explained in section 10.6 on page 140 do not include
delay times. With a constant delay time τ the determining equations for the logical components yield

uout (t) = f (Vin,1 (t− τ) ,Vin,2 (t− τ) , . . .) (6.145)

With the prior node voltages Vin,n (t− τ) known the MNA matrix entries in eq. (10.268) can be rewritten as
. . . 1
. . . 0
. . . 0
1 0 0 0

 ·


Vout (t)
Vin,1 (t)
Vin,2 (t)
Iout (t)

=


I0 (t)
I1 (t)
I2 (t)

uout (t)

 (6.146)

during the transient analysis. The components now appear to be simple linear components. The derivatives
are not anymore necessary for the Newton-Raphson iterations. This happens to be because the output
voltage does not depend directly on the input voltage(s) at exactly the same time point.
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6.5.2 Components with frequency-dependent delay times and losses
In the general case a component with P ports which is defined in the frequency-domain can be represented
by the following matrix equation.

Y11 Y12 . . . Y1P
Y21 Y22 Y2P

...
. . .

...
YP1 YP2 . . . YPP

 ·


V1
V2
...

VP

=


I1
I2
...

IP

 (6.147)

This matrix representation is the MNA representation during the AC analysis. With no specific time-domain
model at hand the equation [

Y ( jω)
]
·
[
V ( jω)

]
=
[
I ( jω)

]
(6.148)

must be transformed into the time-domain using a Fourier transformation.

The convolution integral

The multiplication in the frequency-domain is equivalent to a convolution in the time-domain after the
transformation. It yields the following matrix equation[

H (t)
]
∗
[
V (t)

]
=
[
I (t)

]
(6.149)

whereas H (t) is the impulse response based on the frequency-domain model and the ∗ operator denotes
the convolution integral

H (t)∗V (t) =
Z +∞

−∞

H (τ) ·V (t− τ)dτ (6.150)

The lower bound of the given integral is set to zero since both the impulse response as well as the node
voltages are meant to deliver no contribution to the integral. Otherwise the circuit appears to be unphysical.
The upper limit should be bound to a maximum impulse response time Tend

H (t)∗V (t) =
Z Tend

0
H (τ) ·V (t− τ)dτ (6.151)

with
H (τ) = 0 ∀ τ > Tend (6.152)

Since there is no analytic represention for the impulse response as well as for the node voltages eq. (6.151)
must be rewritten to

H (n ·∆t)∗V (n ·∆t) =
N−1

∑
k=0

H (k ·∆t) ·V ((n− k) ·∆t) (6.153)

with
∆t =

Tend

N
(6.154)

whereas N denotes the number of samples to be used during numerical convolution. Using the current time
step t = n ·∆t it is possible to express eq. (6.153) as

I (t) = H (0) ·V (t)+
N−1

∑
k=1

H (k ·∆t) ·V (t− k ·∆t)︸ ︷︷ ︸
Ieq

(6.155)

With G = H (0) the resulting MNA matrix equation during the transient analysis gets[
G
]
·
[
V (t)

]
=
[
I (t)

]
−
[
Ieq
]

(6.156)
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This means, the component defined in the frequency-domain can be expressed with an equivalent DC
admittance G and additional independent current sources in the time-domain. Each independent current
source at node r delivers the following current

Ieqr =
P

∑
c=1

N−1

∑
k=1

Hrc (k ·∆t) ·Vc (t− k ·∆t) (6.157)

whereas Vc denotes the node voltage at node c at some prior time and Hrc the impulse response of the
component based on the frequency-domain representation. The MNA matrix equation during transient
analysis can thus be written as

G11 G12 . . . G1P
G21 G22 G2P

...
. . .

...
GP1 GP2 . . . GPP

 ·


V1 (t)
V2 (t)

...
VP (t)

=


I1 (t)
I2 (t)

...
IP (t)

−


Ieq1

Ieq2
...

IeqP

 (6.158)

Frequency- to time-domain transformation

With the number of samples N being a power of two it is possible to use the Inverse Fast Fourier Transfor-
mation (IFFT). The transformation to be performed is

Y ( jω)⇔ H (t) (6.159)

The maximum impulse response time of the component is specified by Tend requiring the following trans-
formation pairs.

Y ( jωi)⇔ H (ti) with i = 0,1,2, . . . ,N−1 (6.160)

with

ti = 0,∆t,2 ·∆t, . . . ,(N−1) ·∆t (6.161)

ωi = 0,
1

Tend
,

1
Tend

, . . . ,
N/2
Tend

(6.162)

The frequency samples in eq. (6.162) indicate that only half the values are required to obtain the appropriate
impulse response. This is because the impulse response H (t) is real valued and that is why

Y ( jω) = Y ∗ (− jω) (6.163)

The maximum frequency considered is determined by the maximum impulse response time Tend and the
number of time samples N.

fmax =
N/2

2π ·Tend
=

1
4π ·∆t

(6.164)

It could prove useful to weight the Y-parameter samples in the frequency-domain by multiplying them with
an appropriate windowing function (e.g. Kaiser-Bessel).

Implementation considerations

For the method presented the Y-parameters of a component must be finite for f → 0 as well as for f → fmax.
To obtain G = H (0) the Y-parameters at f = 0 are required. This cannot be ensured for the general case
(e.g. for an ideal inductor).
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6.6 Convergence
Similar to the DC analysis convergence problems occur during the transient analysis (see section 3.3.2
on page 34) as well. In order to improve the overall convergence behaviour it is possible to improve the
models on the one hand and/or to improve the algorithms on the other hand.

The implications during Newton-Raphson iterations solving the linear equation system[
A
(

xk
)]
·
[
xk+1

]
=
[
z
(

xk
)]

(6.165)

are continuous device model equations (with continuous derivatives as well), floating nodes (make the
Jacobian matrix A singular) and the initial guess x0. The convergence problems which in fact occur are
local minimums causing the matrix A to be singular, nearly singular matrices and overflow problems.

6.6.1 Limiting schemes
The modified (damped) Newton-Raphson schemes are based on the limitation of the solution vector xk in
each iteration.

xk+1 = xk +α ·∆xk+1 with ∆xk+1 = xk+1− xk (6.166)

One possibility to choose a value for α ∈ [0,1] is

α =
γ

‖∆xk+1‖
∞

(6.167)

This is a heuristic and does not ensure global convergence, but it can help solving some of the discussed
problems. Another possibility is to pick a value αk which minimizes the L2 norm of the right hand side
vector. This method performs a one-dimensional (line) search into Newton direction and guarantees global
convergence.

xk+1 = xk +α
k ·∆xk+1 with an α

k which minimizes
∥∥∥z
(

xk +α
k ·∆xk+1

)∥∥∥
2

(6.168)
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The one remaining problem about that line search method for convergence improvement is its iteration into
local minimums where the Jacobian matrix is singular. The damped Newton-Raphson method “pushes”
the matrix into singularity as depicted in fig. 6.11.

Figure 6.11: singular Jacobian problem

6.6.2 Continuation schemes
The basic idea behind this Newton-Raphson modification is to generate a sequence of problems such that
a problem is a good initial guess for the following one, because Newton basically converges given a close
initial guess.

The template algorithm for this modification is to solve the equation system

[A] · [x]− [z] = 0 (6.169)
F (x(λ) ,λ) = 0 (6.170)

with the parameter λ ∈ [0,1] given that x(λ) is sufficiently smooth. F (x(0) ,0) starts the continuation and
F (x(1) ,1) ends the continuation. The algorithm outline is as follows: First solve the problem F (x(0) ,0),
e.g. set λ = ∆λ = 0.01 and try to solve F (x(λ) ,λ). If Newton-Raphson converged then increase λ by ∆λ

and double ∆λ = 2 ·∆λ, otherwise half ∆λ = 0.5 ·∆λ and set λ = λprev +∆λ. Repeat this until λ = 1.

Source stepping

Applied to the solution of (non-linear) electrical networks one may think of α∈ [0,1] as a multiplier for the
source vector S yielding S (α) = αS. Varying α form 0 to 1 and solve at each α. The actual circuit solution
is done when α = 1. This method is called source stepping. The solution vector x(α) is continuous in α

(hence the name continuation scheme).

Minimal derivative gmin stepping

Another possibility to improve convergence of almostly singular electrical networks is the so called gmin
stepping, i.e. adding a tiny conductance to ground at each node of the Jacobian A matrix. The continuation
starts e.g. with gmin = 0.01 and ends with gmin = 0 reached by the algorithm described in section 6.6.2.
The equation system is slightly modified by adding the current gmin to each diagonal element of the matrix
A.
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Chapter 7

Harmonic Balance Analysis

Harmonic balance is a non-linear, frequency-domain, steady-state simulation. The voltage and current
sources create discrete frequencies resulting in a spectrum of discrete frequencies at every node in the
circuit. Linear circuit components are solely modeled in frequency domain. Non-linear components are
modeled in time domain and Fourier-transformed before each solving step. The informations in this chapter
are taken from [8] (chapter 3) which is a very nice and well-written publication on this topic.

The harmonic balance simulation is ideal for situations where transient simulation methods are problematic.
These are:

• components modeled in frequency domain, for instance (dispersive) transmission lines

• circuit time constants large compared to period of simulation frequency

• circuits with lots of reactive components

Harmonic balance methods, therefore, are the best choice for most microwave circuits excited with sinu-
soidal signals (e.g. mixers, power amplifiers).

7.1 The Basic Concept
As the non-linear elements are still modeled in time domain, the circuit first must be separated into a linear
and a non-linear part. The internal impedances Zi of the voltage sources are put into the linear part as well.
Figure 7.1 illustrates the concept. Let us define the following symbols:

M = number of (independent) voltage sources

N = number of connections between linear and non-linear subcircuit

K = number of calculated harmonics

L = number of nodes in linear subcircuit
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Figure 7.1: circuit partitioning in harmonic balance

The linear circuit is modeled by two transadmittance matrices: The first one Ỹ relates the source voltages
vS,1...vS,M to the interconnection currents i1...iN and the second one Ŷ relates the interconnection voltages
v1...vN to the interconnection currents i1...iN . Taking both, we can express the current flowing through the
interconnections between linear and non-linear subcircuit:

I = Ỹ N×M ·V S + Ŷ N×N ·V = IS + Ŷ ·V (7.1)

Because V S is known and constant, the first term can already be computed to give IS. Taking the whole
linear network as one block is called the ”piecewise” harmonic balance technique.

The non-linear circuit is modeled by its current function i(t) = fg(v1, ...,vP) and by the charge of its capac-
itances q(t) = fq(v1, ...,vQ). These functions must be Fourier-transformed to give the frequency-domain
vectors Q and IG, respectively.

A simulation result is found if the currents through the interconnections are the same for the linear and
the non-linear subcircuit. This principle actually gave the harmonic balance simulation its name, because
through the interconnections the currents of the linear and non-linear subcircuits have to be balanced at
every harmonic frequency. To be precise the described method is called Kirchhoff’s current law harmonic
balance (KCL-HB). Theoretically, it would also be possible to use an algorithm that tries to balance the
voltages at the subcircuit interconnections. But then the Z matrix (linear subcircuit) and current-dependend
voltage laws (non-linear subcircuit) have to be used. That doesn’t fit the need (see other simulation types).

So, the non-linear equation system that needs to be solved writes:

F(V) = (IS)+(Ŷ ) ·(V )︸ ︷︷ ︸
linear

+ j ·Ω ·Q+ IG︸ ︷︷ ︸
non-linear

= 0 (7.2)

where matrix Ω contains the angular frequencies on the first main diagonal and zeros anywhere else, 0 is
the zero vector.

After each iteration step, the inverse Fourier transformation must be applied to the voltage vector V . Then
the time domain voltages v0,1...vK,N are put into i(t) = fg(v1, ...,vP) and q(t) = fq(v1, ...,vQ) again. Now,
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a Fourier transformation gives the vectors Q and IG for the next iteration step. After repeating this several
times, a simulation result has hopefully be found.

Having found this result means having got the voltages v1...vN at the interconnections of the two subcircuits.
With these values the voltages at all nodes can be calculated: Forget about the non-linear subcircuit, put
current sources at the former interconnections (using the calculated values) and perform a normal AC
simulation. After that the simulation is complete.

A short note to the construction of the quantities: One big difference between the HB and the conventional
simulation types like a DC or an AC simulation is the structure of the matrices and vectors. A vector
used in a conventional simulation contains one value for each node. In an HB simulation there are many
harmonics and thus, a vector contains K values for each node. This means that within a matrix, there is a
K×K diagonal submatrix for each node. Using this structure, all equations can be written in the usual way,
i.e. without paying attention to the special matrix and vector structure. In a computer program, however, a
special matrix class is needed in order to not waste memory for the off-diagonal zeros.

7.2 Going through each Step

7.2.1 Creating Transadmittance Matrix
It needs several steps to get the transadmittance matrices [Ỹ ] and [Ŷ ] mentioned in equation (7.1). First
the MNA matrix of the linear subcircuit (figure 7.1) is created (chapter 3.1) without the voltage sources
S1...SM and without the non-linear components. Note that all nodes must appear in the matrix, even those
where only non-linear components are connected. Then the transimpedance matrix is derived by exciting
one by one the port nodes of the MNA matrix with unity current. After that the transadmittance matrix
is calculated by inverting the transimpedance matrix. Finally the matrices [Ỹ ] and [Ŷ ] are filled with the
corresponding elements of the overall transadmittance matrix.

Note: The MNA matrix of the linear subcircuit has L nodes. Every node, that is connected to the non-linear
subcircuit or/and is connected to a voltage source, is called ”port” in the following text. So, there are M +N
ports. All these ports need to be differential ones, i.e. without ground reference. Otherwise problemes may
occur due to singular matrices when calculating [Ỹ ] or [Ŷ ].

Now this should be described in more detail: By use of the MNA matrix [A], the n-th column of the
transimpedance matrix [Z] should be calculated. The voltage source at port n is connected to node i (positive
terminal) and to node j (negative terminal). This results in the following equation. (If port n is referenced
to ground, the -1 is simply omitted.)

[A] ·

V1
...

VL

=



0
...
1
...
−1

...
0


← i-th row

← j-th row
(7.3)

After having solved it, Z1,n...ZN+M,n are obtained simply by subtraction of the node voltages:

Zm,n = Vk−Vl (7.4)

Here the voltage source at port m is connected to node k (positive terminal) and to node l (negative termi-
nal).
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The next column of [Z] is obtained by changing the right-hand side of equation (7.3) appropriately. As this
has to be done N +M times, it is strongly recommended to use LU decomposition.

As [Ỹ ] is not square, problems encounter by trying to build its inverse matrix. Therefore, the following
procedure is recommended:

• Create the transimpedance matrix for all ports (sources and interconnections).

• Compute the inverse matrix (transadmittance matrix).

• The upper left and upper right corner contains [Ỹ ] and [Ŷ ].

• The lower left and lower right corner contains the transadmittance matrices to calculate the currents
through the sources. They can be used to simplify the AC simulation at the very end.

One further thing must be mentioned: Because the non-linear components and the sources are missing in
the linear MNA matrix, there are often components that are completely disconnected from the rest of the
circuit. The resulting MNA matrix cannot be solved. To avoid this problem, shunt each port with a 100Ω

resistor, i.e. place a resistor in parallel to each non-linear component and to each source. The effect of these
resistors can be easily removed by subtracting 10mS from the first main diagonal of the transadmittance
matrix.

7.2.2 Starting Values
A difficult question is how to find appropriate start values for the harmonic balance simulation. It is
recommended to first perform a DC analysis and start the algorithm with this result. In many situation
(perhaps always) an even better starting point can be achieved by also using the result of a linear AC
simulation. However with a large signal strength and strong non-linearities, convergence may still fail.
Then, the following procedure might succeed: Perform HB simulation by applying half of the desired
signal levels. If convergence is reached, the result can be used as start values for the simulation with the
full signal levels. Otherwise the amplitude of the signals can be further decreased in order to repeat the
above-mentioned procedure.

7.2.3 Solution algorithm
To perform a HB simulation, the multi-dimensional, non-linear function 7.2 has to be solved. One of the
best possibilities to do so is the Newton method:

Vn+1 = Vn−JF(Vn)−1 ·F(Vn) (7.5)

⇒ JF(Vn) ·Vn+1 = JF(Vn) ·Vn−F(Vn) (7.6)

with JF being the Jacobian matrix. DC and transient simulation also use this technique, but here a problem
appears: The derivatives of the component models are not given in frequency domain. Thus, the Jacobian
must be calculated starting at the HB equation 7.2:

JF(V n) =
dF(V )

dV
= Ŷ N×N +

∂IG

∂V
+ j ·Ω∂Q

∂V
= Ŷ N×N + JF,G + j ·Ω ·JF,Q (7.7)

So, two Jacobian matrices have to be built, one for the current IG and one for the charge Q. Both resulted
from a Fourier Transformation. The two operations (Fourier Transformation and differentiation) are linear
and thus, can be exchanged. Hence, the Jacobian matrices are built in time domain and transformed into
frequency domain afterwards.

To obtain a practical algorithm of this procedure, the DFT is best written as matrix equation. By having
a look at equation 15.180 and 15.181, it becomes clear how this works. The harmonic factors exp( jωktn)
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build the matrix Γ:

DFT: U( jω) = Γ ·u(t) (7.8)

IDFT: u(t) = Γ
−1 ·U( jω) (7.9)

with u and U being the vectors of the time and frequency values, respectively. Now, it is possible to
transform the desired Jacobian matrix into frequency domain:

JF,G =
∂IG

∂V
=

∂(Γ · i)
∂(Γ ·v)

= Γ · ∂i
∂v
·Γ−1 (7.10)

Here i is a vector with length K ·N, i.e. first all time values of the first node are inserted, then all time values
of the second node etc. The Jacobi matrix of i is defined as:

JF,G(u) =


∂i1
∂u1

. . .
∂i1
∂un

...
. . .

...
∂in
∂u1

. . .
∂in
∂un

 (7.11)

Hence this matrix consists of K×K blocks (one for each node) that are diagonal matrices with time values
of the derivatives in it. (Components exists that create non-diagonal blocks, but these are so special ones
that they do not appear in this document.)

The formula 7.10 seems to be quite clear, but it has to be pointed out how this works with FFT algorithm.
With Γ

−1 = (Γ−1)T (see equation 15.181) and (A ·B)T = BT ·AT , it follows:

JF,G = Γ · ∂i
∂v
·Γ−1 =

(
Γ
−1 ·

(
Γ · ∂i

∂v

)T
)T

(7.12)

So, there are two steps to perform an FFT-based transformation of the time domain Jacobian matrix into
the frequency domain Jacobian:

1. Perform an FFT on every column of the Jacobian and build a new matrix A with this result, i.e. the
first column of A is the FFTed first column of the Jacobian and so on.

2. Perform an IFFT on every row of the matrix A and build a new matrix B with this result, i.e. the first
row of B is the IFFTed first row of A and so on.

As the Fourier transformation has to be applied to diagonal sub-matrices, the whole above-mentioned
process can be performed by one single FFT. This is done by taking the ∂i/∂v values in a vector Ji and
calculating:

1
K
·FFT(Ji) (7.13)

The result is the first column of JF,G. The second column equals the first one rotated down by one element.
The third column is the second one rotated down by one element etc. A matrix obeying this structure is
called Toeplitz matrix.

So, finally the complete HB Newton iteration step can be written down. Putting 7.2 and 7.7 into 7.6 leads
to

JF(Vn) ·Vn+1 = JF,G ·Vn− IG + j ·Ω ·(JF,Q ·Vn−Q)− IS (7.14)

This is important to notice, because many non-linear components cannot be processed at every bias point
(see figure 3.5). These components create a new voltage estimate across their nodes, whereas the new
estimated absolute voltages at their nodes are not known. Thus, the term JF,G ·Vn can only be created in
one single step, leading to the vector IG,J . Luckily, this procedure also saves computation time, as the
matrix multiplication need not to be performed. The same is true for the term JF,Q ·Vn, leading to the
vector QJ . So it is:

JF ·Vn+1 = IG,J− IG + j ·Ω ·(QJ−Q)− IS (7.15)
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7.2.4 Termination Criteria
Frequency components with very different magnitude appear in harmonic balance simulation. In order to
detect when the solver has found an accurate solution, an absolute as well as relative criteria must be used
on all nodes and at all frequencies. The analysis is regarded as finished if one of the criteria is satisfied.

The absolute and relative criteria write as follows:∣∣Ĩn,k + În,k
∣∣< εabs ∀ n,k (7.16)

2 ·
∣∣∣∣ Ĩn,k + În,k

Ĩn,k− În,k

∣∣∣∣< εrel ∀ n,k (7.17)

where Ĩn,k is the current of the linear circuit partition for node n and frequency k and În,k is the current of
the non-linear circuit partition.

7.3 A Symbolic HB Algorithm
In this final section, a harmonic balance algorithm in symbolic language is presented.

Listing 7.1: symbolic HB algorithm

i n i t ( ) ; / / s e p a r a t e l i n e a r and non− l i n e a r d e v i c e s
Y = c a l c T r a n s M a t r i x ( ) ; / / t r a n s a d m i t t a n c e m a t r i x o f l i n e a r c i r c u i t
I s = c a l c S o u r c e C u r r e n t ( ) ; / / s o u r c e c u r r e n t o f l i n e a r s u b c i r c u i t
( v , i , q ) = c a l c u l a t e D C ( ) ; / / DC s i m u l a t i o n as i n i t i a l HB e s t i m a t e
V = FFT ( v ) ; / / t r a n s f o r m v o l t a g e i n t o f r e q u e n c y domain

l oop :
I = FFT ( i ) ; / / c u r r e n t i n t o f r e q u e n c y domain
Q = FFT ( q ) ; / / charge i n t o f r e q u e n c y domain
E = I s + Y∗V + j ∗Ω∗Q + I ; / / HB e q u a t i o n
i f ( abs ( E ) < Eterm ) break ; / / c o n v e r g e n c e reached ?
JG = mFFT( GJacob ian ( v ) ) ; / / c r e a t e J a c o b i a n s and t r a n s f o r m . . .
JQ = mFFT( QJacob ian ( v ) ) ; / / . . . them i n t o f r e q u e n c y domain
J = Y + j ∗Ω∗JQ + JG ; / / c a l c u l a t e o v e r a l l J a c o b i a n
V = V − i n v e r t ( J ) ∗ E ; / / Newton Raphson i t e r a t i o n s t e p
v = IFFT (V ) ; / / v o l t a g e i n t o t i m e domain
i = n o n l i n e a r C u r r e n t ( v ) ; / / u se component models t o g e t . . .
q = n o n l i n e a r C h a r g e ( v ) ; / / . . . v a l u e s f o r n e x t i t e r a t i o n
goto l oop ;

Va = i n v e r t ( Ya ) ∗ I a ; / / AC s i m u l a t i o n t o g e t a l l v o l t a g e s

7.4 Large-Signal S-Parameter Simulation
Using harmonic balance techniques, it is also possible to perform an S-parameter simulation in the large-
signal regime. This is called LSSP (large-signal s-parameter). Figure 7.2 shows the principle. The port
n excites the circuit with the simulation frequency f0; meanwhile the power of all other ports is set to
zero. Having voltage and current of the fundamental frequency f0 at the ports, the S-parameters can be
calculated:

Smn =
Um( f0)− Im( f0) ·Zm

Un( f0)+ In( f0) ·Zn
·
√

Zn

Zm
(7.18)
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Figure 7.2: S-parameter from AC voltages and currents

An algorithm in symbolic language should describe the whole LSSP:

Listing 7.2: symbolic HB algorithm

f o r n=1 t o NumberO f Ports {
S e t power o f p o r t n t o Pn .
S e t power o f p o r t s 6= n t o 0 .
Per fo rm Harmonic Ba lance .

f o r m=1 t o NumberO f Ports
C a l c u l a t e Smn a c c o r d i n g t o above−ment ioned e q u a t i o n .

}

7.5 Autonomous Harmonic Balance
Up to here, only forced circuits were dealt with. That is, the above-mentioned methods can analyse circuits
that are driven by signal sources, but do not create a signal by themselves. The typical examples are
amplifiers and mixers. However, harmonic balance techniques are also capable of simulating autonomous
circuits like oscillators.
This is mostly done in the following way:

1. The user enters an approximate frequency, where the oscillation is expected. (An ac simulation can
be performed to get an idea about that.)

2. The user enters a frequency interval. Somewhere within this interval the oscillation must appear.

3. The user specifies a circuit node where the oscillation voltage can best be measured.

4. The simulator performs several harmonic balance analyses with different fundamental frequencies
in search for the oscillation.
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Chapter 8

Harmonic Balance Noise Analysis

Once a harmonic balance simulation is solved a cyclostationary noise analysis can be performed. This
results in the sideband noise of each harmonic (including DC, i.e. base band noise). The method described
here is based on the principle of small-signal noise. That is, the noise power is assumed small enough
(compared to the signal power and its harmonics) to neglect the higher order mixing products. This pro-
cedure is the standard concept in CAE and allows for a quite simple and time-saving algorithm: Use the
Jacobian to calculate a conversion matrix and then apply the noise correlation matrix to it. Two important
publications for HB noise simulation exist that were used for the next subsection [9], [10].

Figure 8.1 shows the equivalent circuit for starting the HB noise analysis. At every connection between lin-
ear and non-linear subcircuit, there are two noise current sources: one stemming from the linear subcircuit
and one stemming from the non-linear subcircuit.

Figure 8.1: principle of harmonic balance noise model

8.1 The Linear Subcircuit
The noise stemming from the linear subcircuit is calculated in two steps:

1. An AC noise analysis (see section 5.2) is performed for the interconnecting nodes of linear and
non-linear subcircuit. This results in the noise-voltage correlation matrix (CZ,lin)N×N .
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2. The matrix (CZ,lin)N×N is converted into a noise-current correlation matrix (see section 2.4.2):

(CY,lin)N×N = Ŷ ·CZ,lin ·Ŷ
+ (8.1)

where Ŷ is taken from equation 7.2.

Remark: If no explicit noise sources exist in the linear subcircuit, (CZ,lin)N×N can be computed much faster
by using Bosma’s theorem (equation 2.38).

8.2 The Non-Linear Subcircuit
The noise in the non-linear part of the circuit is calculated by using the quasi-static approach, i.e. for every
moment in time the voltages and currents are regarded as a time-dependend bias point. The noise properties
of these bias points are used for the noise calculation.

Remark: It is not clear whether this approach creates a valid result for noise with long-time correlation
(e.g. 1/f noise), too. But up to now, no other methods were proposed and some publications reported to
have achieved reasonable results with this approach and 1/f noise.

Calculating the noise-current correlation matrix (CY,nl)N×N needs several steps. The DC bias point taken
from the result of the HB simulation is the beginning. Its values are the bias used to build the correlation
matrix (CY,DC). Each part is a K×K diagonal submatrix. The values are the power-spectral densities (PSD)
for each harmonic frequency:

CY,DC(ωR) CY,DC(ω0 +ωR) CY,DC(2 ·ω0 +ωR) . . . (8.2)

where ωR is the desired noise frequency.

The second step creates the cyclostationary modulation that is applied to the DC correlation matrix. The
modulation factor M(t) originates from the current power spectral density Si of each time step normalized
to its DC bias value:

M(t) =
Si (u(t))
Si(uDC)

=
Si (u(t))
CY,DC

(8.3)

Note that this equation only holds if the frequency dependency of Si is the same for every bias, so that
M(t) is frequency independent. This demand is fullfilled for all practical models. So the above-mentioned
equation can be derived for an arbitrary noise frequency ωR.

The third step transforms M(t) into frequency domain. This is done by the procedure described in equation
7.13, resulting in a Toeplitz matrix.
The fourth and final step calculates the desired correlation matrix:

(CY,nl) = M ·(CY,DC) ·M+ (8.4)

8.3 Noise Conversion
As the noise of linear and non-linear components are uncorrelated, the noise-voltage correlation matrix at
the interconnecting ports can now be calculated:

CZ = J−1
F ·(CY,lin +CY,nl) ·(J−1

F )+ (8.5)

here J−1
F is the inverse of the Jacobian matrix taken from the last HB iteration step (where it already was

inverted). Note that it needs to be the precise Jacobian matrix. I.e. it must be taken from an iteration step
very close to the solution, without any convergence helpers, and with a precise FFT algorithm (e.g. the
multi-dimensional FFT).
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Finally, the noise voltages from the interconnecting ports have to be used to compute all other noise volt-
ages. This is straight forward:

1. Convert the noise-voltage correlation matrix into the noise-current correlation matrix.

2. Expand the matrix to the whole circuit, i.e. fill it up with zeros.

3. Perform an AC noise analysis for all nodes of interest.

The whole algorithm has to be performed for every noise frequency ωR of interest.

8.4 Phase and Amplitude Noise
The harmonic balance noise analysis calculates the noise power spectral density Suu,k(ωR) at the noise
frequency ωR of the k-th harmonic. The SSB phase and amplitude noise normalized to the carrier can be
obtained by using the symmetry between positive and negative harmonic numbers:

〈
ΦkΦ

∗
−k
〉

=
Suu,k +Suu,−k−2 ·Re(CZ,k,−k · exp(− j ·2 ·φk))

|Uk|2
(8.6)

〈
AkA∗−k

〉
=

Suu,k +Suu,−k +2 ·Re(CZ,k,−k · exp(− j ·2 ·φk))
|Uk|2

(8.7)

with Uk = |Uk| · exp( j ·φk) being the k-th harmonic.
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Chapter 9

Linear devices

As the MNA matrix is the y-parameter matrix of the whole circuit, components that are defined by y-
parameters can be easily inserted by adding these parameters to the MNA matrix elements (so-called
’stamping’).

Components that cannot be defined by y-parameters need to add additional columns and rows to the MNA
matrix. Components defined by z-parameters can be added in the following way (example for a 2-port). It
is easily extendable for any port number.

. . 1 0

. . 0 1
−1 0 Z11 Z12
0 −1 Z21 Z22

 ·


V1
V2
Iin
Iout

=


I1
I2
0
0

 (9.1)

Components that are characterized by S-parameters (normalized to Z0) can be put into the MNA matrix by
the following scheme (example for a 3-port). It is easily extendable for any port number.


. . . 1 0 0
. . . 0 1 0
. . . 0 0 1

S11−1 S12 S13 Z0 ·(S11 +1) Z0 ·S12 Z0 ·S13
S21 S22−1 S23 Z0 ·S21 Z0 ·(S22 +1) Z0 ·S23
S31 S32 S33−1 Z0 ·S31 Z0 ·S32 Z0 ·(S33 +1)

 ·


V1
V2
V3
II1
II2
II3

=


I1
I2
I3
0
0
0

 (9.2)

9.1 Resistor
For DC and AC simulation an ideal resistor with resistance R yields:

Y =
1
R
·
(

1 −1
−1 1

)
(9.3)

The noise correlation matrix at temperature T yields:

(CY ) =
4 ·k ·T

R
·
(

1 −1
−1 1

)
(9.4)

The scattering parameters normalized to impedance Z0 writes as follows.

S11 = S22 =
R

2 ·Z0 +R
(9.5)

S12 = S21 = 1−S11 =
2 ·Z0

2 ·Z0 +R
(9.6)
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Being on temperature T , the noise wave correlation matrix writes as follows.

(C) = k ·T · 4 ·R ·Z0

(2 ·Z0 +R)2 ·
(

1 −1
−1 1

)
(9.7)

The noise wave correlation matrix of a parallel resistor with resistance R writes as follows.

(C) = k ·T · 4 ·R ·Z0

(2 ·R+Z0)2 ·
(

1 1
1 1

)
(9.8)

The noise wave correlation matrix of a grounded resistor with resistance R is a matrix consisting of one
element and writes as follows.

(C) = k ·T · 4 ·R ·Z0

(R+Z0)2 (9.9)

9.2 Capacitor
During DC simulation the capacitor is an open circuit. Thus, its MNA entries are all zero.

During AC simulation the y-parameter matrix of an ideal capacitor with the capacitance C writes as follows.

Y =
(

+ jωC − jωC
− jωC + jωC

)
(9.10)

The scattering parameters (normalized to Z0) of an ideal capacitor with capacitance C writes as follows.

S11 = S22 =
1

2 ·Z0 · jωC +1
(9.11)

S12 = S21 = 1−S11 (9.12)

An ideal capacitor is noise free. Its noise correlation matrices are, therefore, zero.

9.3 Inductor
During DC simulation an inductor is a short circuit, thus, its MNA matrix entries need an additional row
and column.  . . +1

. . −1
+1 −1 0

 ·
V1

V2
Ibr

=

I1
I2
0

=

0
0
0

 (9.13)

During AC simulation the Y-parameter matrix of an ideal inductor with the inductance L writes as follows.

Y =

+
1

jωL
− 1

jωL

− 1
jωL

+
1

jωL

 (9.14)

The scattering parameters of an ideal inductor with inductance L writes as follows.

S11 = S22 =
jωL

2 ·Z0 + jωL
(9.15)

S12 = S21 = 1−S11 (9.16)

An ideal inductor is noise free.
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9.4 DC Block
A DC block is a capacitor with an infinite capacitance. During DC simulation the DC block is an open
circuit. Thus, its MNA entries are all zero.

The MNA matrix entries of a DC block correspond to an ideal short circuit during AC analysis which is
modeled by a voltage source with zero voltage. . . +1

. . −1
+1 −1 0

 ·
V1

V2
Ibr

=

I1
I2
0

=

0
0
0

 (9.17)

The scattering parameters writes as follows.

(S) =
(

0 1
1 0

)
(9.18)

A DC block is noise free. A model for transient simulation does not exist. It is common practice to model
it as a capacitor with finite capacitance whose value is entered by the user.

9.5 DC Feed
A DC feed is an inductor with an infinite inductance. The MNA matrix entries of a DC feed correspond to
an ideal short circuit during DC analysis: . . +1

. . −1
+1 −1 0

 ·
V1

V2
Ibr

=

I1
I2
0

=

0
0
0

 (9.19)

During AC simulation the DC feed is an open circuit. Thus, its MNA entries are all zero.

The scattering parameters writes as follows.

(S) =
(

1 0
0 1

)
(9.20)

A DC feed is noise free. A model for transient simulation does not exist. It is common practice to model it
as an inductor with finite inductance whose value is entered by the user.

9.6 Bias T
An ideal bias t is a combination of a DC block and a DC feed (fig. 9.1). During DC simulation the MNA
matrix of an ideal bias t writes as follows:

. . . 0

. . . 1

. . . −1
0 1 −1 0

 ·


V1
V2
V3
Iout

=


I1
I2
I3
0

=


0
0
0
0

 (9.21)
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Figure 9.1: bias t

The MNA entries of the bias t during AC analysis write as follows.
. . . −1
. . . 1
. . . 0
−1 1 0 0

 ·


V1
V2
V3
Iout

=


I1
I2
I3
0

=


0
0
0
0

 (9.22)

The scattering parameters writes as follows.

(S) =

0 1 0
1 0 0
0 0 1

 (9.23)

A bias t is noise free. A model for transient simulation does not exist. It is common practice to model it as
an inductor and a capacitance with finite values which are entered by the user.

9.7 Transformer
The two winding ideal transformer, as shown in fig. 9.2, is determined by the following equation which
introduces one more unknown in the MNA matrix.

Figure 9.2: ideal two winding transformer

T · (V2−V3) = V1−V4 → V1−T ·V2 +T ·V3−V4 = 0 (9.24)

The new unknown variable It must be considered by the four remaining simple equations.

I1 =−It I2 = T · It I3 =−T · It I4 = It (9.25)

And in matrix representation this is for DC and for AC simulation:
. . . . −1
. . . . T
. . . . −T
. . . . 1
1 −T T −1 0

 ·


V1
V2
V3
V4
It

=


I1
I2
I3
I4
0

=


0
0
0
0
0

 (9.26)
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It is noticeable that the additional row (part of the C matrix) and the corresponding column (part of the
B matrix) are transposed to each other. When considering the turns ratio T being complex introducing
an additional phase the transformer can be used as phase-shifting transformer. Both the vectors must be
conjugated complex transposed in this case.

Using the port numbers depicted in fig. 9.2, the scattering parameters of an ideal transformer with voltage
transformation ratio T (number of turns) writes as follows.

S14 = S22 = S33 = S41 =
1

T 2 +1
(9.27)

S12 =−S13 = S21 =−S24 =−S31 = S34 =−S42 = S43 = T ·S22 (9.28)

S11 = S23 = S32 = S44 = T ·S12 (9.29)

An ideal transformer is noise free.

9.8 Symmetrical transformer
The ideal symmetrical transformer, as shown in fig. 9.3, is determined by the following equations which
introduce two more unknowns in the MNA matrix.

Figure 9.3: ideal three winding transformer

T1 · (V2−V3) = V1−V6 → V1−T1 ·V2 +T1 ·V3−V6 = 0 (9.30)

T2 · (V2−V3) = V5−V4 → −T2 ·V2 +T2 ·V3−V4 +V5 = 0 (9.31)

The new unknown variables IT 1 and IT 2 must be considered by the six remaining simple equations.

I2 = T1 · IT 1 +T2 · IT 2 I3 =−T1 · IT 1−T2 · IT 2 (9.32)

I1 =−IT 1 I4 = IT 2 I5 =−IT 2 I6 = IT 1 (9.33)

The matrix representation needs to be augmented by two more new rows and their corresponding columns.
For DC and AC simulation it is:

. . . . . . −1 0

. . . . . . T1 T2

. . . . . . −T1 −T2

. . . . . . 0 1

. . . . . . 0 −1

. . . . . . 1 0
1 −T1 T1 0 0 −1 0 0
0 −T2 T2 −1 1 0 0 0


·



V1
V2
V3
V4
V5
V6
IT 1
IT 2


=



I1
I2
I3
I4
I5
I6
0
0


=



0
0
0
0
0
0
0
0


(9.34)
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Using the port numbers depicted in fig. 9.3, the scattering parameters of an ideal, symmetrical transformer
with voltage transformation ratio (number of turns) T1 and T2, respectively, writes as follows.

denom = 1+T 2
1 +T 2

2 (9.35)

S11 = S66 =
T 2

1
denom

S16 = S61 = 1−S11 (9.36)

S44 = S55 =
T 2

2
denom

S45 = S54 = 1−S44 (9.37)

S22 = S33 =
1

denom
S23 = S32 = 1−S22 (9.38)

S12 = S21 =−S13 =−S31 =−S26 =−S62 = S36 = S63 =
T1

denom
(9.39)

−S24 =−S42 = S25 = S52 = S34 = S43 =−S35 =−S53 =
T2

denom
(9.40)

−S14 =−S41 = S15 = S51 = S46 = S64 =−S56 =−S65 =
T1 ·T2

denom
(9.41)

An ideal symmetrical transformer is noise free.

9.9 Non-ideal transformer
Many simulators support non-ideal transformers (e.g. mutual inductor in SPICE). An often used model
consists of finite inductances and an imperfect coupling (straw inductance). This model has three pa-
rameters: Inductance of the primary coil L1, inductance of the secondary coil L2 and the coupling factor
k = 0...1.

9.9.1 Mutual inductors with two or three of inductors
This model can be replaced by the equivalent circuit depicted in figure 9.4. The values are calculated as
follows.

turn ratio: T =
√

L1

L2
(9.42)

mutual inductance: M = k ·L1 (9.43)
primary inductance: L1,new = L1−M = L1 ·(1− k) (9.44)

secondary inductance: L2,new = L2−
M
T 2 = L2 ·(1− k) (9.45)

Figure 9.4: equivalent circuit of non-ideal transformer
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The Y-parameters of this component are:

Y11 = Y44 =−Y41 =−Y14 =
1

jω ·L1 ·(1− k2)
(9.46)

Y22 = Y33 =−Y23 =−Y32 =
1

jω ·L2 ·(1− k2)
(9.47)

Y13 = Y31 = Y24 = Y42 =−Y12 =−Y21 =−Y34 =−Y43 =
k

jω ·
√

L1 ·L2 ·(1− k2)
(9.48)

Furthermore, its S-parameters are:

D = (k2−1) · ω
2 ·L1 ·L2

2 ·Z0
+ jωL1 + jωL2 +2 ·Z0 (9.49)

S14 = S41 =
jωL2 +2 ·Z0

D
(9.50)

S11 = S44 = 1−S14 (9.51)

S23 = S32 =
jωL1 +2 ·Z0

D
(9.52)

S22 = S33 = 1−S23 (9.53)

S12 =−S13 = S21 =−S24 =−S31 = S34 =−S42 = S43 =
jω ·k ·

√
L1 ·L2

D
(9.54)

Also including an ohmic resistance R1 and R2 for each coil, leads to the following Y-parameters:

Y11 = Y44 =−Y41 =−Y14 =
1

jω ·L1 ·
(

1− k2 · jωL2

jωL2 +R2

)
+R1

(9.55)

Y22 = Y33 =−Y23 =−Y32 =
1

jω ·L2 ·
(

1− k2 · jωL1

jωL1 +R1

)
+R2

(9.56)

Y13 = Y31 = Y24 = Y42 =−Y12 =−Y21 =−Y34 =−Y43 = k · jω
√

L1 ·L2

jω ·L2 +R2
·Y11 (9.57)

Building the S-parameters leads to too large equations. Numerically converting the Y-parameters into
S-parameters is therefore recommended.

The MNA matrix entries during DC analysis and the noise correlation matrices of this transformer are:

(Y ) =


1/R1 0 0 −1/R1

0 1/R2 −1/R2 0
0 −1/R2 1/R2 0

−1/R1 0 0 1/R1

 (9.58)

(CY ) = 4 ·k ·T ·


1/R1 0 0 −1/R1

0 1/R2 −1/R2 0
0 −1/R2 1/R2 0

−1/R1 0 0 1/R1

 (9.59)

(CS) = 4 ·k ·T ·Z0 ·


R1

(2·Z0+R1)2 0 0 − R1
(2·Z0+R1)2

0 R2
(2·Z0+R2)2 − R2

(2·Z0+R2)2 0

0 − R2
(2·Z0+R2)2

R2
(2·Z0+R2)2 0

− R1
(2·Z0+R1)2 0 0 R1

(2·Z0+R1)2

 (9.60)
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A transformer with three coupled inductors has three coupling factors k12, k13 and k23. Its Y-parameters
write as follows (port numbers are according to figure 9.3).

A = jω ·(1− k2
12− k2

13− k2
23 +2 ·k12 ·k13 ·k23) (9.61)

Y11 = Y66 =−Y16 =−Y61 =
1− k2

23
L1 ·A

(9.62)

Y22 = Y33 =−Y23 =−Y32 =
1− k2

12
L3 ·A

(9.63)

Y44 = Y55 =−Y45 =−Y54 =
1− k2

13
L2 ·A

(9.64)

Y12 = Y21 = Y36 = Y63 =−Y13 =−Y31 =−Y26 =−Y62 =
k12 ·k23− k13√

L1 ·L3 ·A
(9.65)

Y15 = Y51 = Y46 = Y64 =−Y14 =−Y41 =−Y56 =−Y65 =
k13 ·k23− k12√

L1 ·L2 ·A
(9.66)

Y25 = Y52 = Y43 = Y34 =−Y24 =−Y42 =−Y53 =−Y35 =
k12 ·k13− k23√

L2 ·L3 ·A
(9.67)

9.9.2 Mutual inductors with any number of inductors
A more general approach for coupled inductors can be obtained by using the induction law:

VL = jωL · IL + jω ·
N

∑
n=1

kn ·
√

L ·Ln · IL,n (9.68)

where VL and IL is the voltage across and the current through the inductor, respectively. L is its inductance.
The inductor is coupled with N other inductances Ln. The corresponding coupling factors are kn and IL,n
are the currents through the inductors.

Realizing this approach with the MNA matrix is straight forward: Every inductance L needs an additional
matrix row. The corresponding element in the D matrix is jωL. If two inductors are coupled the cross
element in the D matrix is jωk ·

√
L1 ·L2. For two coupled inductors this yields:

. . . . +1 0

. . . . −1 0

. . . . 0 +1

. . . . 0 −1
+1 −1 0 0 jωL1 jωk ·

√
L1 ·L2

0 0 +1 −1 jωk ·
√

L1 ·L2 jωL2

 ·


V1
V2
V3
V4
Ibr1
Ibr2

=


I1
I2
I3
I4
0
0

=


0
0
0
0
0
0

 (9.69)

Obviously, this approach has an advantage: It also works for zero inductances and for unity coupling factors
and is extendible for any number of inductors. It has the disadvantage that it enlarges the MNA matrix.

The S-parameter matrix of this component is obtained by converting the Z-parameter matrix of the compo-
nent. The Z-parameter matrix can be constructed using the following scheme: The self-inductances on the
main diagonal and the mutual inductances in the off-diagonal entries.

(
Z′
)

= jω ·
[

L1 k ·
√

L1 ·L2
k ·
√

L1 ·L2 L2

]
(9.70)

This matrix representation does not contain the second terminals of the inductances. That’s why the Z-
parameter matrix must be converted into the Y-parameter matrix representation which is then extended to
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contain the additional terminals.

(
Z′
)
→
(
Y ′
)

=
[

y11 y12
y21 y22

]
→ (Y ) =


+y11 −y11 +y12 −y12
−y11 +y11 −y12 +y12
+y21 −y21 +y22 −y22
−y21 +y21 −y22 +y22

 (9.71)

The resulting Y-parameter matrix can be converted into the appropriate S-parameters numerically by
eqn. (15.7).

9.10 Attenuator
The ideal attenuator with (power) attenuation L is frequency independent and the model is valid for DC
and for AC simulation. It is determined by the following Z parameters.

Z11 = Z22 = Zre f ·
L+1
L−1

(9.72)

Z12 = Z21 = Zre f ·
2 ·
√

L
L−1

(9.73)

The Z parameter representation is not very practical as new lines in the MNA matrix have to be added.
More useful are the Y parameters.

(Y ) =
1

Zre f ·(L−1)
·
(

L+1 −2 ·
√

L
−2 ·
√

L L+1

)
(9.74)

Attenuator with (power) attenuation L, reference impedance Zre f and temperature T :

(CY ) = 4 ·k ·T ·Re(Y ) =
4 ·k ·T

Zre f ·(L−1)
·
(

L+1 −2 ·
√

L
−2 ·
√

L L+1

)
(9.75)

The scattering parameters and noise wave correlation matrix of an ideal attenuator with (power) attenuation
L (loss) (or power gain G = 1/L) in reference to the impedance Zre f writes as follows.

S11 = S22 =
r ·(L−1)

L− r2 =
r ·(1−G)
1− r2 ·G

(9.76)

S12 = S21 =
√

L ·(1− r2)
L− r2 =

√
G ·(1− r2)
1− r2 ·G

(9.77)

(C) = k ·T · (L−1) ·(r2−1)
(L− r2)2 ·

(
−r2−L 2 ·r

√
L

2 ·r
√

L −r2−L

)
(9.78)

with
r =

Zre f −Z0

Zre f +Z0
(9.79)

9.11 Amplifier
An ideal amplifier increases signal strength from input to output and blocks all signals flowing into the
output. The ideal amplifier is an isolator with voltage gain G and is determined by the following Z or Y
parameters (valid for DC and AC simulation).

Z11 = Z1 Z12 = 0 (9.80)

Z21 = 2 ·
√

Z1 ·Z2 ·G Z22 = Z2 (9.81)
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Y11 =
1
Z1

Y12 = 0 (9.82)

Y21 =− 2 ·G√
Z1 ·Z2

Y22 =
1
Z2

(9.83)

With the reference impedance of the input Z1 and the one of the output Z2 and the voltage amplification G,
the scattering parameters of an ideal amplifier write as follows.

S11 =
Z1−Z0

Z1 +Z0
(9.84)

S12 = 0 (9.85)

S22 =
Z2−Z0

Z2 +Z0
(9.86)

S21 =
4 ·Z0 ·

√
Z1 ·Z2 ·G

(Z1 +Z0) ·(Z2 +Z0)
(9.87)

9.12 Isolator
An isolator is a one-way two-port, transporting incoming waves lossless from the input (port 1) to the output
(port 2), but dissipating all waves flowing into the output. The ideal isolator with reference impedances Z1
(input) and Z2 (output) is determined by the following Z parameters (for DC and AC simulation).

Z11 = Z1 Z12 = 0 (9.88)

Z21 = 2 ·
√

Z1 ·Z2 Z22 = Z2 (9.89)

A more useful MNA representation is with Y parameters.

(Y ) =


1
Z1

0
−2√
Z1 ·Z2

1
Z2

 (9.90)

Isolator with reference impedance Z1 (input) and Z2 (output) and temperature T :

(CY ) = 4 ·k ·T ·


1
Z1

0
−2√
Z1 ·Z2

1
Z2

 (9.91)

With the reference impedance of the input Z1 and the one of the output Z2, the scattering parameters of an
ideal isolator writes as follows.

S11 =
Z1−Z0

Z1 +Z0
(9.92)

S12 = 0 (9.93)

S22 =
Z2−Z0

Z2 +Z0
(9.94)

S21 =
√

1− (S11)2 ·
√

1− (S22)2 (9.95)

Being on temperature T , the noise wave correlation matrix of an ideal isolator with reference impedance
Z1 and Z2 (input and output) writes as follows.

(C) =
4 ·k ·T ·Z0

(Z1 +Z0)2 ·

 Z1
√

Z1 ·Z2 ·
Z0−Z1

Z0 +Z2
√

Z1 ·Z2 ·
Z0−Z1

Z0 +Z2
Z2 ·

(
Z1−Z0

Z2 +Z0

)2

 (9.96)
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9.13 Circulator
A circulator is a 3-port device, transporting incoming waves lossless from port 1 to port 2, from port 2 to
port 3 and from port 3 to port 1. In all other directions, there is no energy flow. The ideal circulator cannot
be characterized with Z or Y parameters, because their values are partly infinite. But implementing with S
parameters is practical (see equation 9.2).

With the reference impedances Z1, Z2 and Z3 for the ports 1, 2 and 3 the scattering matrix of an ideal
circulator writes as follows.

denom = 1− r1 ·r2 ·r3 (9.97)

r1 =
Z0−Z1

Z0 +Z1
, r2 =

Z0−Z2

Z0 +Z2
, r3 =

Z0−Z3

Z0 +Z3
(9.98)

S11 =
r2 ·r3− r1

denom
, S22 =

r1 ·r3− r2

denom
, S33 =

r1 ·r2− r3

denom
(9.99)

S12 =
√

Z2

Z1
· Z1 +Z0

Z2 +Z0
· r3 ·(1− r2

1)
denom

, S13 =
√

Z3

Z1
· Z1 +Z0

Z3 +Z0
· 1− r2

1
denom

(9.100)

S21 =
√

Z1

Z2
· Z2 +Z0

Z1 +Z0
· 1− r2

2
denom

, S23 =
√

Z3

Z2
· Z2 +Z0

Z3 +Z0
· r1 ·(1− r2

2)
denom

(9.101)

S31 =
√

Z1

Z3
· Z3 +Z0

Z1 +Z0
·

r2 ·(1− r2
3)

denom
, S32 =

√
Z2

Z3
· Z3 +Z0

Z2 +Z0
·

1− r2
3

denom
(9.102)

An ideal circulator is noise free.

9.14 Phase shifter
A phase shifter alters the phase of the input signal independently on the frequency. As a result the relation
between input and output signal is complex. To get the DC model, some simulators use the AC formulas and
create the real part or the magnitude. This procedure has no physical reason, because it uses an operation
that is not defined for DC. But one can think in the following direction: As a DC quantity is constant, it
doesn’t change if it is phase-shifted. (An AC quantity doesn’t change its magnitude, too.) Or to say it with
other words, for a DC simulation the phase to shift is always zero. That leads to the result that the phase
shifter is a short circuit for DC. So, this is true for all reference impedances.

For an AC simulation, the Z-parameters of a phase shifter writes as follows.

Z11 = Z22 =
j ·Zre f

tan(φ)
(9.103)

Z12 = Z21 =
j ·Zre f

sin(φ)
(9.104)

The admittance parameters required for the AC analysis result in

Y11 = Y22 =
j

Zre f · tan(φ)
(9.105)

Y12 = Y21 =
1

j ·Zre f · sin(φ)
(9.106)

where φ denotes the actual phase shift of the device. For a zero phase shift (φ = 0) neither the Z- nor the
Y-parameters are defined. That is why during AC analysis a phase shifter with zero phase shift represents
an ideal short circuit regardless its reference impedance.
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The MNA matrix entries of an ideal short circuit during AC and DC analysis correspond to a voltage source
with zero voltage. The complete MNA matrix representation writes as follows . . +1

. . −1
+1 −1 0

 ·
V1

V2
Ibr

=

I1
I2
0

=

0
0
0

 (9.107)

whence Ibr denote the branch current through the voltage source.

The scattering parameters of an ideal phase shifter with phase shift φ and reference impedance Zre f writes
as follows.

r =
Zre f −Z0

Zre f +Z0
(9.108)

S11 = S22 =
r · (1− exp( j ·2φ))
1− r2 · exp( j ·2φ)

(9.109)

S12 = S21 =
(1− r2) · exp( j ·φ)
1− r2 · exp( j ·2φ)

(9.110)

An ideal phase shifter is noise free.

9.15 Coupler
According to the port numbers in fig. 9.5 the Y-parameters of a coupler write as follows.

Y11 = Y22 = Y33 = Y44 =
A · (2−A)

D
(9.111)

Y12 = Y21 = Y34 = Y43 =
−A ·B

D
(9.112)

Y13 = Y31 = Y24 = Y42 =
C · (A−2)

D
(9.113)

Y14 = Y41 = Y23 = Y32 =
B ·C

D
(9.114)

(9.115)

with

A = k2 · (1+ exp( j ·2φ)) (9.116)

B = 2 ·
√

1− k2 (9.117)
C = 2 ·k · exp( j ·φ) (9.118)

D = Zre f ·
(
A2−C2) (9.119)

(9.120)

whereas 0 < k < 1 denotes the coupling factor, φ the phase shift of the coupling path and Zre f the reference
impedance. The coupler can also be used as hybrid by setting k = 1/

√
2. For a 90 degree hybrid, for

example, set φ to π/2. Note that for most couplers no real DC model exists. Taking the real part of the AC
matrix often leads to non-logical results. Thus, it is better to model the coupler for DC by making a short
between port 1 and port 2 and between port 3 and port 4. The rest should be an open. This leads to the
following MNA matrix. 

. . . . 1 0

. . . . −1 0

. . . . 0 1

. . . . 0 −1
1 −1 0 0 0 0
0 0 1 −1 0 0

 ·


V1
V2
V3
V4

Iout1
Iout4

=


I1
I2
I3
I4
0
0

=


0
0
0
0
0
0

 (9.121)
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Figure 9.5: ideal coupler device

The scattering parameters of a coupler are:

S11 = S22 = S33 = S44 = 0 (9.122)

S14 = S23 = S32 = S41 = 0 (9.123)

S12 = S21 = S34 = S43 =
√

1− k2 (9.124)

S13 = S31 = S24 = S42 = k · exp( jφ) (9.125)

whereas 0 < k < 1 denotes the coupling factor, φ the phase shift of the coupling path. Extending them for
an arbitrary reference impedance Zre f , they already become quite complex:

r =
Z0−Zre f

Z0 +Zre f
(9.126)

A = k2 · (exp( j ·2φ)+1) (9.127)

B = r2 · (1−A) (9.128)

C = k2 · (exp( j ·2φ)−1) (9.129)

D = 1−2 ·r2 · (1+C)+B2 (9.130)
(9.131)

S11 = S22 = S33 = S44 = r · A ·B+C +2 ·r2 ·k2 · exp( j ·2φ)
D

(9.132)

S12 = S21 = S34 = S43 =
√

1− k2 ·
(
1− r2

)
· (1−B)

D
(9.133)

S13 = S31 = S24 = S42 = k · exp( jφ) ·
(
1− r2

)
· (1+B)

D
(9.134)

S14 = S23 = S32 = S41 = 2 ·
√

1− k2 ·k · exp( jφ) ·r ·
(
1− r2

)
D

(9.135)

An ideal coupler is noise free.

9.16 Gyrator
A gyrator is an impedance inverter. Thus, for example, it converts a capacitance into an inductance and vice
versa. The ideal gyrator, as shown in fig. 9.6, is determined by the following equations which introduce
two more unknowns in the MNA matrix.
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Figure 9.6: ideal gyrator

Iin =
1
R
· (V2−V3) → 1

R
·V2−

1
R
·V3− Iin = 0 (9.136)

Iout =− 1
R
· (V1−V4) → − 1

R
·V1 +

1
R
·V4− Iout = 0 (9.137)

The new unknown variables Iout and Iin must be considered by the four remaining simple equations.

I1 = Iin I2 = Iout I3 =−Iout I4 =−Iin (9.138)

As can be seen, a gyrator consists of two cross-connected VCCS (section 9.19.1). Hence, its y-parameter
matrix is:

(Y ) =


0 1

R − 1
R 0

− 1
R 0 0 1

R
1
R 0 0 − 1

R
0 − 1

R
1
R 0

 (9.139)

The scattering matrix of an ideal gyrator with the ratio R writes as follows.

r =
R

Zre f
=

1
G ·Zre f

(9.140)

S11 = S22 = S33 = S44 =
R2

4 ·Z2
re f +R2

=
r2

r2 +4
(9.141)

S14 = S23 = S32 = S41 = 1−S11 (9.142)

S12 =−S13 =−S21 = S24 = S31 =−S34 =−S42 = S43 =
2 ·r

r2 +4
(9.143)

9.17 Voltage and current sources
For an AC analysis, DC sources are short circuit (voltage source) or open circuit (current source), respec-
tively. Accordingly, for a DC analysis, AC sources are short circuit (voltage source) or open circuit (current
source), respectively. As these sources have no internal resistance, they are noisefree.

The MNA matrix of a current source is (with short circuit current I0 flowing into node 1 and out of node
2): [

. .

. .

]
·
[
V1
V2

]
=
[

I0
−I0

]
(9.144)

The MNA matrix of a voltage source is (with open circuit voltage U0 across node 1 to node 2): . . 1
. . −1
1 −1 0

 ·
V1

V2
Iin

=

 0
0

U0

 (9.145)
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The MNA matrix of a power source is (with internal resistance R and available power P): 1
R

− 1
R

− 1
R

1
R

 · [V1
V2

]
=


√

8 ·P
R

−
√

8 ·P
R

 (9.146)

The factor ”8” is because of:

• transforming peak current value into effective value (factor two)

• at power matching the internal resistance dissipates the same power as the load (gives factor four).

The noise current correlation matrix of a power source equals the one of a resistor with resistance R.

All voltage sources (AC and DC) are short circuits and therefore their S-parameter matrix equals the one
of the DC block. All current sources are open circuits and therefore their S-parameter matrix equals the
one of the DC feed.

9.18 Noise sources
To implement the frequency dependencies of all common noise PSDs the following equation can be used.

PSD =
PSD0

a+b · f c (9.147)

Where f is frequency and a, b, c are the parameters. The following PSDs appear in electric devices.

white noise (thermal noise, shot noise): a = 0, b = 1, c = 0
pink noise (flicker noise): a = 0, b = 1, c = 1
Lorentzian PSD (generation-recombination noise): a = 1, b = 1/ f 2

c , c = 2

9.18.1 Noise current source
Noise current source with a current power spectral density of cPSD:

(CY ) = cPSD ·
(

1 −1
−1 1

)
(9.148)

The MNA matrix entries for DC and AC analysis are all zero.

The noise wave correlation matrix of a noise current source with current power spectral density cPSD and
its S parameter matrix write as follows.

(C) = cPSD ·Z0 ·
(

1 −1
−1 1

)
(S) =

(
1 0
0 1

)
(9.149)

9.18.2 Noise voltage source
A noise voltage source (voltage power spectral density vPSD) cannot be modeled with the noise current
matrix. That is why one has to use a noise current source (current power spectral density cPSD) connected
to a gyrator (transimpedance R) satisfying the equation

vPSD = cPSD ·R2 (9.150)

Figure 9.7 shows an example.
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Figure 9.7: noise voltage source (left-hand side) and its equivalent circuit (right-hand side)

The MNA matrix entries of the above construct (gyrator ratio R = 1) is similiar to a voltage source with
zero voltage.  . . −1

. . 1
1 −1 0

 ·
V1

V2
Ix

=

I1
I2
0

=

0
0
0

 (9.151)

The appropriate noise current correlation matrix yields:

(CY ) = cPSD ·

0 0 0
0 0 0
0 0 1

 (9.152)

The noise wave correlation matrix of a noise voltage source with voltage power spectral density vPSD and
its S parameter matrix write as follows.

(C) =
vPSD
4 ·Z0

·
(

1 −1
−1 1

)
(S) =

(
0 1
1 0

)
(9.153)

9.18.3 Correlated noise sources
For two correlated noise current sources the (normalized) correlation coefficient K must be known (with
|K| = 0 . . .1). If the first noise source has the current power spectral density Si1 and is connected to node
1 and 2, and if furthermore the second noise source has the spectral density Si2 and is connected to node 3
and 4, then the correlation matrix writes:

(CY ) =


Si1 −Si1 K ·

√
Si1 ·Si2 −K ·

√
Si1 ·Si2

−Si1 Si1 −K ·
√

Si1 ·Si2 K ·
√

Si1 ·Si2
K ·
√

Si1 ·Si2 −K ·
√

Si1 ·Si2 Si2 −Si2
−K ·
√

Si1 ·Si2 K ·
√

Si1 ·Si2 −Si2 Si2

 (9.154)

The MNA matrix entries for DC and AC analysis are all zero.

The noise wave correlation matrix of two correlated noise current sources with current power spectral
densities Si1 and Si2 and correlation coefficient K writes as follows.

(C) = Z0 ·


Si1 −Si1 K ·

√
Si1 ·Si2 −K ·

√
Si1 ·Si2

−Si1 Si1 −K ·
√

Si1 ·Si2 K ·
√

Si1 ·Si2
K ·
√

Si1 ·Si2 −K ·
√

Si1 ·Si2 Si2 −Si2
−K ·
√

Si1 ·Si2 K ·
√

Si1 ·Si2 −Si2 Si2

 (9.155)

(S) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (9.156)

For two correlated noise voltage sources two extra rows and columns are needed in the MNA matrix:
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. . . . −1 0
. . . . 1 0
. . . . 0 −1
. . . . 0 1
1 −1 0 0 0 0
0 0 1 −1 0 0

 ·


V1
V2
V3
V4
Ix1
Ix2

=


I1
I2
I3
I4
0
0

=


0
0
0
0
0
0

 (9.157)

The appropriate noise current correlation matrix (with the noise voltage power spectral densities Sv1 and
Sv2 and the correlation coefficient K) yields:

(CY ) =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 Sv1 K ·

√
Sv1 ·Sv2

0 0 0 0 K ·
√

Sv1 ·Sv2 Sv2

 (9.158)

The noise wave correlation matrix of two correlated noise voltage sources with voltage power spectral
densities Sv1 and Sv2 and correlation coefficient K and its S parameter matrix write as follows.

(C) =
1

4 ·Z0
·


Sv1 −Sv1 K ·

√
Sv1 ·Sv2 −K ·

√
Sv1 ·Sv2

−Sv1 Sv1 −K ·
√

Sv1 ·Sv2 K ·
√

Sv1 ·Sv2
K ·
√

Sv1 ·Sv2 −K ·
√

Sv1 ·Sv2 Sv2 −Sv2
−K ·
√

Sv1 ·Sv2 K ·
√

Sv1 ·Sv2 −Sv2 Sv2

 (9.159)

(S) =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 (9.160)

If a noise current source (ports 1 and 2) and a noise voltage source (ports 3 and 4) are correlated, the MNA
matrix entries are as follows. 

. . . . 0

. . . . 0

. . . . −1

. . . . 1
0 0 1 −1 0

 ·


V1
V2
V3
V4
Ix

=


I1
I2
I3
I4
0

=


0
0
0
0
0

 (9.161)

The appropriate noise current correlation matrix (with the noise power spectral densities Si1 and Sv2 and
the correlation coefficient K) yields:

(CY ) =


Si1 −Si1 0 0 K ·

√
Si1 ·Sv2

−Si1 Si1 0 0 0
0 0 0 0 0
0 0 0 0 0

K ·
√

Si1 ·Sv2 0 0 0 Sv2

 (9.162)

Note: Because the gyrator factor (It is unity.) has been omitted in the above matrix the units are not correct.
This can be ignored.

The noise wave correlation matrix of one correlated noise current source Si1 and one noise voltage source
Sv2 with correlation coefficient K writes as follows.

(C) =


Z0 ·Si1 −Z0 ·Si1 K/2 ·

√
Si1 ·Sv2 −K/2 ·

√
Si1 ·Sv2

−Z0 ·Si1 Z0 ·Si1 −K/2 ·
√

Si1 ·Sv2 K/2 ·
√

Si1 ·Sv2
K/2 ·

√
Si1 ·Sv2 −K/2 ·

√
Si1 ·Sv2 Sv2/4/Z0 −Sv2/4/Z0

−K/2 ·
√

Si1 ·Sv2 K/2 ·
√

Si1 ·Sv2 −Sv2/4/Z0 Sv2/4/Z0

 (9.163)
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(S) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (9.164)

9.19 Controlled sources
The models of the controlled sources contain the transfer factor G. It is complex because of the delay time
T and frequency f .

G = G ·e jωT = G ·e j ·2π f ·T (9.165)

During a DC analysis (frequency zero) it becomes real because the exponent factor is unity.

9.19.1 Voltage controlled current source
The voltage-dependent current source (VCCS), as shown in fig. 9.8, is determined by the following equa-
tion which introduces one more unknown in the MNA matrix.

Figure 9.8: voltage controlled current source

Iout = G · (V1−V4) → V1−V4−
1
G
· Iout = 0 (9.166)

The new unknown variable Iout must be considered by the four remaining simple equations.

I1 = 0 I2 = Iout I3 =−Iout I4 = 0 (9.167)

And in matrix representation this is:
. . . . 0
. . . . 1
. . . . −1
. . . . 0
1 0 0 −1 − 1

G

 ·


V1
V2
V3
V4
Iout

=


I1
I2
I3
I4
0

=


0
0
0
0
0

 (9.168)

As you can see the last row which has been added by the VCCS represents the determining equation
(9.166). The additional right hand column in the matrix keeps the system consistent.

When pivotising the above MNA stamp (9.168) the additional row and column can be saved ensuring G
keeps finite (the pivot element must be non-zero). Both representations are equivalent. If G is zero the
below representation must be used.

0 0 0 0
G 0 0 −G
−G 0 0 G
0 0 0 0

 ·


V1
V2
V3
V4

=


I1
I2
I3
I4

=


0
0
0
0

 (9.169)

The scattering matrix of the voltage controlled current source writes as follows (τ is time delay).
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S11 = S22 = S33 = S44 = 1 (9.170)

S12 = S13 = S14 = S23 = S32 = S41 = S42 = S43 = 0 (9.171)

S21 = S34 =−2 ·G · exp(− jωτ) (9.172)

S24 = S31 = 2 ·G · exp(− jωτ) (9.173)

9.19.2 Current controlled current source
The current-dependent current source (CCCS), as shown in fig. 9.9, is determined by the following equation
which introduces one more unknown in the MNA matrix.

Figure 9.9: current controlled current source

V1−V4 = 0 (9.174)

The new unknown variable Iout must be considered by the four remaining simple equations.

I1 = +
1
G
· Iout I2 = Iout I3 =−Iout I4 =− 1

G
· Iout (9.175)

And in matrix representation this is:
. . . . 1

G
. . . . 1
. . . . −1
. . . . − 1

G
1 0 0 −1 0

 ·


V1
V2
V3
V4
Iout

=


I1
I2
I3
I4
0

=


0
0
0
0
0

 (9.176)

The scattering matrix of the current controlled current source writes as follows (τ is time delay).

S14 = S22 = S33 = S41 = 1 (9.177)

S11 = S12 = S13 = S23 = S32 = S42 = S43 = S44 = 0 (9.178)

S21 = S34 =−G · exp(− jωτ) (9.179)

S24 = S31 = G · exp(− jωτ) (9.180)

9.19.3 Voltage controlled voltage source
The voltage-dependent voltage source (VCVS), as shown in fig. 9.10, is determined by the following
equation which introduces one more unknown in the MNA matrix.
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Figure 9.10: voltage controlled voltage source

V2−V3 = G · (V1−V4) → V1 ·G−V2 +V3−V4 ·G = 0 (9.181)

The new unknown variable Iout must be considered by the four remaining simple equations.

I1 = 0 I2 =−Iout I3 = Iout I4 = 0 (9.182)

And in matrix representation this is:
. . . . 0
. . . . −1
. . . . 1
. . . . 0
G −1 1 −G 0

 ·


V1
V2
V3
V4
Iout

=


I1
I2
I3
I4
0

=


0
0
0
0
0

 (9.183)

The scattering matrix of the voltage controlled voltage source writes as follows (τ is time delay).

S11 = S23 = S32 = S44 = 1 (9.184)

S12 = S13 = S14 = S22 = S33 = S41 = S42 = S43 = 0 (9.185)

S21 = S34 = G · exp(− jωτ) (9.186)

S24 = S31 =−G · exp(− jωτ) (9.187)

9.19.4 Current controlled voltage source
The current-dependent voltage source (CCVS), as shown in fig. 9.11, is determined by the following
equations which introduce two more unknowns in the MNA matrix.

Figure 9.11: current controlled voltage source

V1−V4 = 0 (9.188)

V2−V3 = G · Iin → V2−V3− Iin ·G = 0 (9.189)

The new unknown variables Iout and Iin must be considered by the four remaining simple equations.

I1 = Iin I2 =−Iout I3 = Iout I4 =−Iin (9.190)
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The matrix representation needs to be augmented by two more new rows (for the new unknown variables)
and their corresponding columns.

. . . . 1 0

. . . . 0 −1

. . . . 0 1

. . . . −1 0
0 1 −1 0 −G 0
1 0 0 −1 0 0

 ·


V1
V2
V3
V4
Iin
Iout

=


I1
I2
I3
I4
0
0

=


0
0
0
0
0
0

 (9.191)

The scattering matrix of the current controlled voltage source writes as follows (τ is time delay).

S14 = S23 = S32 = S41 = 1 (9.192)

S11 = S12 = S13 = S22 = S33 = S42 = S43 = S44 = 0 (9.193)

S21 = S34 =
G
2
· exp(− jωτ) (9.194)

S24 = S31 =−G
2
· exp(− jωτ) (9.195)

9.20 Transmission Line
A transmission line is usually described by its ABCD-matrix. (Note that in ABCD-matrices, i.e. the chain
matrix representation, the current i2 is defined to flow out of the output port.)

(A) =
(

cosh(γ · l) ZL · sinh(γ · l)
sinh(γ · l)/ZL cosh(γ · l)

)
(9.196)

These can easily be recalculated into impedance parameters.

Z11 = Z22 =
ZL

tanh(γ · l)
(9.197)

Z12 = Z21 =
ZL

sinh(γ · l)
(9.198)

Or in admittance parameter representation it yields

Y11 = Y22 =
1

ZL · tanh(γ · l)

Y12 = Y21 =
−1

ZL · sinh(γ · l)

(9.199)

whence γ denotes the propagation constant α+ jβ and l is the length of the transmission line. ZL represents
the characteristic impedance of the transmission line. The Y-parameters as defined by eq. (9.199) can be
used for the microstrip line. For an ideal, i.e. lossless, transmission lines they write accordingly.

Z11 = Z22 =
ZL

j · tan(β · l)
(9.200)

Z12 = Z21 =
ZL

j · sin(β · l)
(9.201)

Y11 = Y22 =
1

j ·ZL · tan(β · l)
(9.202)

Y12 = Y21 =
j

ZL · sin(β · l)
(9.203)
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The scattering matrix of an ideal, lossless transmission line with impedance Z and electrical length l writes
as follows.

r =
Z−Z0

Z +Z0
(9.204)

p = exp
(
− jω

l
c0

)
(9.205)

S11 = S22 =
r ·(1− p2)
1− r2 · p2 , S12 = S21 =

p ·(1− r2)
1− r2 · p2 (9.206)

With c0 = 299 792 458 m/s being the vacuum light velocity. Adding attenuation to the transmission line,
the quantity p extends to:

p = exp
(
− jω

l
c0
−α · l

)
(9.207)

Another equivalent equation set for the calculation of the scattering parameters is the following: With the
physical length l of the component, its impedance ZL and propagation constant γ, the complex propagation
constant γ is given by

γ = α+ jβ (9.208)

where α is the attenuation factor and β is the (real) propagation constant given by

β =
√

εre f f (ω) ·k0 (9.209)

where εre f f (ω) is the effective dielectric constant and k0 is the TEM propagation constant k0 for the equiv-
alent transmission line with an air dielectric.

k0 = ω
√

ε0µ0 (9.210)

The expressions used to calculate the scattering parameters are given by

S11 = S22 =
(z− y)sinhγl

2coshγl +(z+ y)sinhγl
(9.211)

S12 = S21 =
2

2coshγl +(z+ y)sinhγl
(9.212)

with z being the normalized impedance and y is the normalized admittance.

9.21 Differential Transmission Line
A differential (4-port) transmission line is not referenced to ground potential, i.e. the wave from the input
(port 1 and 4) is distributed to the output (port 2 and 3). Its admittance parameters are:

Y11 = Y22 = Y33 = Y44 =−Y14 =−Y41 =−Y23 =−Y32 =
1

ZL · tanh(γ · l)
(9.213)

Y13 = Y31 = Y24 = Y42 =−Y12 =−Y21 =−Y34 =−Y43 =
1

ZL · sinh(γ · l)
(9.214)

The scattering parameters writes:

S11 = S22 = S33 = S44 = ZL ·
(2 ·Z0 +ZL) · exp(2 ·γ · l)+(2 ·Z0−ZL)

(2 ·Z0 +ZL)2 · exp(2 ·γ · l)− (2 ·Z0−ZL)2 (9.215)

S14 = S41 = S23 = S32 = 1−S11 (9.216)
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S12 = S21 = S34 = S43 =−S13 =−S31 =−S24 =−S42 (9.217)

=
4 ·ZL ·Z0 · exp(γ · l)

(2 ·Z0 +ZL)2 · exp(2 ·γ · l)− (2 ·Z0−ZL)2 (9.218)

Note: As already stated, this is a pure differential transmission line without ground reference. It is not a
three-wire system. I.e. there is only one mode. The next section describes a differential line with ground
reference.

9.22 Coupled transmission line
A coupled transmission line is described by two identical transmission line ABCD-matrices, one for the
even mode (or common mode) and one for the odd mode (or differential mode). Because the coupled lines
are a symmetrical 3-line system, the matrices are completely independent of each other. Therefore, its
Y-parameters write as follows.

Y11 = Y22 = Y33 = Y44 =
1

2 ·ZL,e · tanh(γe · l)
+

1
2 ·ZL,o · tanh(γo · l)

(9.219)

Y12 = Y21 = Y34 = Y43 =
−1

2 ·ZL,e · sinh(γe · l)
+

−1
2 ·ZL,o · sinh(γo · l)

(9.220)

Y13 = Y31 = Y24 = Y42 =
−1

2 ·ZL,e · sinh(γe · l)
+

1
2 ·ZL,o · sinh(γo · l)

(9.221)

Y14 = Y41 = Y23 = Y32 =
1

2 ·ZL,e · tanh(γe · l)
+

−1
2 ·ZL,o · tanh(γo · l)

(9.222)

The S-parameters (according to the port numbering in fig. 9.12) are as followed [11].

reflection coefficients
S11 = S22 = S33 = S44 = Xe +Xo (9.223)

through paths
S12 = S21 = S34 = S43 = Ye +Yo (9.224)

coupled paths
S14 = S41 = S23 = S32 = Xe−Xo (9.225)

isolated paths
S13 = S31 = S24 = S42 = Ye−Yo (9.226)

with the denominator

De,o = 2 ·ZL,e,o ·Z0 · cosh(γe,o · l)+
(
Z2

L,e,o +Z2
0
)
· sinh(γe,o · l) (9.227)

and

Xe,o =

(
Z2

L,e,o−Z2
0

)
· sinh(γe,o · l)

2 ·De,o
(9.228)

Ye,o =
ZL,e,o ·Z0

De,o
(9.229)
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Figure 9.12: coupled transmission line

9.23 S-parameter container with additional reference port
The Y-parameters of a multi-port component defined by its S-parameters required for a small signal AC
analysis can be obtained by converting the S-parameters into Y-parameters.

Figure 9.13: S-parameter container with noise wave correlation matrix

In order to extend a m− 1-port to have a S-parameter device with m ports assuming that the original
reference port had a reflection coefficient Γm the new S-parameters are according to T. O. Grosch and L.
A. Carpenter [12]:

Smm =

2−Γm−m+
m−1

∑
i=1

m−1

∑
j=1

S′i j

1−m ·Γm−
m−1

∑
i=1

m−1

∑
j=1

S′i j

(9.230)

Sim =
(

1−Γm ·Smm

1−Γm

)
·

(
1−

m−1

∑
j=1

S′i j

)
for i = 1,2 . . .m−1 (9.231)

Sm j =
(

1−Γm ·Smm

1−Γm

)
·

(
1−

m−1

∑
i=1

S′i j

)
for j = 1,2 . . .m−1 (9.232)

Si j = S′i j−
(

Γm ·Sim ·Sm j

1−Γm ·Smm

)
for i, j = 1,2 . . .m−1 (9.233)

If the reference port has been ground potential, then Γm simply folds to -1. The reverse transformation by
connecting a termination with a reflection coefficient of Γm to the mth port writes as follows.

S′i j = Si j +
(

Γm ·Sim ·Sm j

1−Γm ·Smm

)
for i, j = 1,2 . . .m−1 (9.234)

With the S-parameter transformation done the m-port noise wave correlation matrix is

Cm =
∣∣∣∣ 1
1−Γm

∣∣∣∣2 · (K ·Cm−1 ·K+−Ts ·kB ·
∣∣∣1−|Γm|2

∣∣∣ ·D ·D+
)

(9.235)
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with

K =


1+Γm (S1m−1) ΓmS1m . . . ΓmS1m

ΓmS2m 1+Γm (S2m−1) . . . ΓmS2m
...

...
. . .

...
ΓmS(m−1)m ΓmS(m−1)m . . . 1+Γm

(
S(m−1)m−1

)
ΓmSmm−1 ΓmSmm−1 . . . ΓmSmm−1

 (9.236)

D =


S1m
S2m

...
S(m−1)m
Smm−1

 (9.237)

whence Ts denotes the equivalent noise temperature of the original reference port and the + operator indi-
cates the transposed conjugate matrix (also called adjoint or adjugate).

The reverse transformation can be written as

Cm−1 = K′ ·Cm ·K′+ +Ts ·kB ·

∣∣∣1−|Γm|2
∣∣∣

|1−ΓmSmm|2
·D′ ·D′+ (9.238)

with

K′ =



1 0 . . . 0
ΓmS1m

1−ΓmSmm

0 1 . . . 0
ΓmS2m

1−ΓmSmm

. .
. . . .

...

0 0 . . . 1
ΓmS(m−1)m

1−ΓmSmm


(9.239)

D′ =


S1m
S2m

...
S(m−1)m

 (9.240)

9.24 Real-Life Models
Non-ideal electronic components exhibit parasitic effects. Depending on the usage, they may show a
very different behaviour than the ideal ones. More precise models can sometimes be obtained from their
manufacturers or vendors. However, first oder approximations exists that can give satisfactory result in
many cases. A few of these simple models are presented in this chapter.
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Figure 9.14: simple equivalent circuit of a 0603 resistor

A model for a resistor (case 0603) is depicted in figure 9.14. Conclusion:

• useful up to 1GHz

• values around 150Ω are useful up to 10GHz

Figure 9.15: simple equivalent circuit of a 0603 ceramic capacitor

A model for a (ceramic) capacitor (case 0603) is depicted in figure 9.15. Conclusion:

• as coupling capacitor useful wide into GHz band

• as blocking capacitor a via is necessary, i.e. 10nF has resonance at about 50MHz

Figure 9.16: simple equivalent circuit of an electrolyte capacitor

Electrolyte capacitors are quite complicate to model. They also show the biggest differences from sample
to sample. Nonetheless, figure 9.16 gives an idea how a model may look like. Conclusion:

• very broad resonance

• useful up to about 10MHz (strongly depending on capacitance)
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Chapter 10

Non-linear devices

10.1 Operational amplifier
The ideal operational amplifier, as shown in fig. 10.1, is determined by the following equation which
introduces one more unknown in the MNA matrix.

Figure 10.1: ideal operational amplifier

V1−V3 = 0 (10.1)

The new unknown variable Iout must be considered by the three remaining simple equations.

I1 = 0 I2 = Iout I3 = 0 (10.2)

And in matrix representation this is (for DC and AC simulation):
. . . 0
. . . 1
. . . 0
1 0 −1 0

 ·


V1
V2
V3
Iout

=


I1
I2
I3
0

 (10.3)

The operational amplifier could be considered as a special case of a voltage controlled current source with
infinite forward transconductance G. Please note that the presented matrix form is only valid in cases where
there is a finite feedback impedance between the output and the inverting input port.

To allow a feedback circuit to the non-inverting input (e.g. for a Schmitt trigger), one needs a limited
output voltage swing. The following equations are often used to model the transmission characteristic of
operational amplifiers.

I1 = 0 I3 = 0 (10.4)

V2 = Vmax ·
2
π

arctan
(

π

2 ·Vmax
·G ·(V1−V3)

)
(10.5)
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with Vmax being the maximum output voltage swing and G the voltage amplification. To model the small-
signal behaviour (AC analysis), it is necessary to differentiate:

g =
∂V2

∂(V1−V3)
=

G

1+
(

π

2 ·Vmax
·G ·(V1−V3)

)2 (10.6)

This leads to the following matrix representation being a specialised three node voltage controlled voltage
source (see section 9.19.3 on page 97).

. . . 0

. . . 1

. . . 0
g −1 −g 0

 ·


V1
V2
V3
Iout

=


I1
I2
I3
0

 (10.7)

The above MNA matrix entries are also used during the non-linear DC analysis with the 0 in the right hand
side vector replaced by an equivalent voltage

Veq = g · (V1−V3)−Vout (10.8)

with Vout computed using eq. (10.5).

With the given small-signal matrix representation, building the S-parameters is easy.

(S) =

 1 0 0
4g −1 −4g
0 0 1

 (10.9)

10.2 PN-Junction Diode
The following table contains the model parameters for the pn-junction diode model.

Name Symbol Description Unit Default
Is IS saturation current A 10−14

N N emission coefficient 1.0
Isr ISR recombination current parameter A 0.0
Nr NR emission coefficient for Isr 2.0
Rs RS ohmic resistance Ω 0.0

Cj0 C j0 zero-bias junction capacitance F 0.0
M M grading coefficient 0.5
Vj Vj junction potential V 0.7
Fc Fc forward-bias depletion capacitance coefficient 0.5
Cp Cp linear capacitance F 0.0
Tt τ transit time s 0.0

Bv Bv reverse breakdown voltage V ∞

Ibv IBv current at reverse breakdown voltage A 0.001
Kf KF flicker noise coefficient 0.0
Af AF flicker noise exponent 1.0

Ffe FFE flicker noise frequency exponent 1.0
Temp T device temperature ◦C 26.85

Xti XT I saturation current exponent 3.0
Eg EG energy bandgap eV 1.11

Tbv TBv Bv linear temperature coefficient 1/◦C 0.0
Trs TRS Rs linear temperature coefficient 1/◦C 0.0

106



Name Symbol Description Unit Default
Ttt1 Tτ1 Tt linear temperature coefficient 1/◦C 0.0
Ttt2 Tτ2 Tt quadratic temperature coefficient 1/◦C2 0.0
Tm1 TM1 M linear temperature coefficient 1/◦C 0.0
Tm2 TM2 M quadratic temperature coefficient 1/◦C2 0.0

Tnom TNOM temperature at which parameters were extracted ◦C 26.85
Area A default area for diode 1.0

10.2.1 Large signal model

Figure 10.2: pn-junction diode symbol and large signal model

The current equation of the diode and its derivative writes as follows:

Id = IS ·
(

e
Vd

N ·VT −1
)

+ ISR ·
(

e
Vd

NR ·VT −1
)

(10.10)

gd =
∂Id

∂Vd
=

IS

N ·VT
·e

Vd
N ·VT +

ISR

NR ·VT
·e

Vd
NR ·VT (10.11)

Figure 10.3: accompanied DC model of intrinsic diode

The complete MNA matrix entries are:[
gd −gd
−gd gd

]
·
[
VC
VA

]
=
[
+Id−gd ·Vd
−Id +gd ·Vd

]
(10.12)

107



10.2.2 Small signal model

Figure 10.4: small signal model of intrinsic diode

The voltage dependent capacitance consists of a diffusion capacitance, a junction capacitance and an addi-
tional linear capacitance which is usually modeled by the following equations.

Cd = Cp + τ ·gd +


C j0 ·

(
1− Vd

Vj

)−M

for Vd ≤ Fc ·Vj

C j0

(1−Fc)
M ·
(

1+
M · (Vd−Fc ·Vj)

Vj · (1−Fc)

)
for Vd > Fc ·Vj

(10.13)

The S-parameters of the passive circuit shown in fig. 10.4 can be written as

S11 = S22 =
1

1+2 ·y
(10.14)

S12 = S21 = 1−S11 =
2 ·y

1+2 ·y
(10.15)

with
y = Z0 · (gd + jωCd) (10.16)

10.2.3 Noise model
The thermal noise generated by the series resistor is characterized by the following spectral density.

i2RS

∆ f
=

4kBT
RS

(10.17)
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Figure 10.5: noise model of intrinsic diode

The shot noise and flicker noise generated by the DC current flow through the diode is characterized by the
following spectral density.

i2d
∆ f

= 2eId +KF
IAF
d

f FFE
(10.18)

Thus the noise current correlation matrix can be formed. This matrix can be easily converted to the noise
wave correlation matrix representation using the formulas given in section 2.4.2 on page 23.

CY = ∆ f

[
+i2d −i2d
−i2d +i2d

]
(10.19)

An ideal diode (pn- or schottky-diode) generates shot noise. Both types of current (field and diffusion)
contribute independently to it. That is, even though the two currents flow in different directions (”minus”
in dc current equation), they have to be added in the noise equation (current is proportional to noise power
spectral density). Taking into account the dynamic conductance gd in parallel to the noise current source,
the noise wave correlation matrix writes as follows.

(C) =
∣∣∣∣ 0.5 ·Y0

gd + jωCd +0.5 ·Y0

∣∣∣∣2 ·2 ·e · IS ·
(

exp
(

Vd

N ·VT

)
+1
)
·Z0 ·

(
1 −1
−1 1

)
= 2 ·e ·Z0 · (Id +2 · IS) ·

∣∣∣∣ 1
2 ·Z0 ·(gd + jωCd)+1

∣∣∣∣2 · ( 1 −1
−1 1

) (10.20)

Where e is charge of an electron, VT the temperature voltage, gd the (dynamic) conductance of the diode
and Cd its junction capacitance.

To be very precise, the equation above only holds for diodes whose field and diffusion current dominate
absolutely (diffusion limited diode), i.e. N = 1. Many diodes also generate a generation/recombination
current (N ≈ 2), which produces shot noise, too. But depending on where and how the charge carriers
generate or recombine, their effective charge is somewhat smaller than e. To take this into account, one
needs a further factor K. Several opinions exist according the value of K. Some say 1 and 2/3 are common
values, others say K = 1/N with K and N being bias dependent. Altogether it is:

(C) = 2 ·e ·Z0 ·K · (Id +2 · IS) ·
∣∣∣∣ 1
2 ·Z0 ·(gd + jωCd)+1

∣∣∣∣2 · ( 1 −1
−1 1

)
with

1
2
≤ K ≤ 1

(10.21)

Remark: Believing the diode equation ID = IS ·(exp(V/(N ·VT ))− 1) is the whole truth, it is logical to
define K = 1/N, because at V = 0 the conductance gd of the diode must create thermal noise.
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Some special diodes have additional current or noise components (tunnel diodes, avalanche diodes etc.).
All these mechanisms are not taken into account in equation (10.21).

The parasitic ohmic resistance in a non-ideal diode, of course, creates thermal noise.
Noise current correlation matrix (for details on the parameters see above):

(CY ) = 2 ·e ·K · (Id +2 · IS) ·
(

1 −1
−1 1

)
(10.22)

10.2.4 Temperature model
This section mathematically describes the dependencies of the diode characterictics on temperature. For
a junction diode a typical value for XT I is 3.0, for a Schottky barrier diode it is 2.0. The energy band gap
at zero temperature EG is by default 1.11eV. For other materials than Si, 0.69eV (for a Schottky barrier
diode), 0.67eV (for Ge) and 1.43eV (for GaAs) should be used.

n2
i (T ) = B ·T 3 ·e−EG(T )/kBT (10.23)

ni (T ) = 1.45 ·1010 ·
(

T
300K

)1.5

· exp
(

e ·EG (300K)
2 ·kB ·300K

− e ·EG (T )
2 ·kB ·T

)
(10.24)

EG (T ) = EG−
α ·T 2

β+T
(10.25)

with experimental values for Si given by

α = 7.02 ·10−4

β = 1108
EG = 1.16eV

The following equations show the temperature dependencies of the diode parameters. The reference tem-
perature T1 in these equations denotes the nominal temperature TNOM specified by the diode model.

IS (T2) = IS (T1) ·
(

T2

T1

)XT I/N

· exp
[
−e ·EG (300K)

N ·kB ·T2
·
(

1− T2

T1

)]
(10.26)

Vj (T2) =
T2

T1
·Vj (T1)+

2 ·kB ·T2

e
· ln
(

ni (T1)
ni (T2)

)
(10.27)

=
T2

T1
·Vj (T1)−

2 ·kB ·T2

e
· ln
(

T2

T1

)1.5

−
(

T2

T1
·EG (T1)−EG (T2)

)
(10.28)

C j0 (T2) = C j0 (T1) ·
(

1+M ·
(

400 ·10−6 · (T2−T1)−
Vj (T2)−Vj (T1)

Vj (T1)

))
(10.29)

Some additionial temperature coefficients determine the temperature dependence of even more model pa-
rameters.

Bv (T2) = Bv (T1)−TBv · (T2−T1) (10.30)

τ(T2) = τ(T1) ·
(

1+Tτ1 · (T2−T1)+Tτ2 · (T2−T1)
2
)

(10.31)

M (T2) = M (T1) ·
(

1+TM1 · (T2−T1)+TM2 · (T2−T1)
2
)

(10.32)

RS (T2) = RS (T1) · (1+TRS · (T2−T1)) (10.33)
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10.2.5 Area dependence of the model
The area factor A used in the diode model determines the number of equivalent parallel devices of the
specified model. The diode model parameters affected by the A factor are:

IS (A) = IS ·A (10.34)
C j0 (A) = C j0 ·A (10.35)

RS (A) =
RS

A
(10.36)

10.3 Junction FET
The following table contains the model parameters for the JFET model.

Name Symbol Description Unit Default
Vt0 VT h zero -bias threshold voltage V −2.0

Beta β transconductance parameter A/V2 10−4

Lambda λ channel-length modulation parameter 1/V 0.0
Rd RD drain ohmic resistance Ω 0.0
Rs RS source ohmic resistance Ω 0.0
Is IS gate-junction saturation current A 10−14

N N gate P-N emission coefficient 1.0
Isr ISR gate-junction recombination current parameter A 0.0
Nr NR Isr emission coefficient 2.0

Cgs Cgs zero-bias gate-source junction capacitance F 0.0
Cgd Cgd zero-bias gate-drain junction capacitance F 0.0

Pb Pb gate-junction potential V 1.0
Fc Fc forward-bias junction capacitance coefficient 0.5
M M gate P-N grading coefficient 0.5
Kf KF flicker noise coefficient 0.0
Af AF flicker noise exponent 1.0

Ffe FFE flicker noise frequency exponent 1.0
Temp T device temperature ◦C 26.85

Xti XT I saturation current exponent 3.0
Vt0tc VT hTC Vt0 temperature coefficient V/◦C 0.0

Betatce βTCE Beta exponential temperature coefficient %/◦C 0.0
Tnom TNOM temperature at which parameters were extracted ◦C 26.85
Area A default area for JFET 1.0

10.3.1 Large signal model
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Figure 10.6: junction FET symbol and large signal model

The current equation of the gate source diode and its derivative writes as follows:

IGS = IS ·
(

e
VGS

N ·VT −1
)

+ ISR ·
(

e
VGS

NR ·VT −1
)

(10.37)

ggs =
∂IGS

∂VGS
=

IS

N ·VT
·e

VGS
N ·VT +

ISR

NR ·VT
·e

VGS
NR ·VT (10.38)

The current equation of the gate drain diode and its derivative writes as follows:

IGD = IS ·
(

e
VGD

N ·VT −1
)

+ ISR ·
(

e
VGD

NR ·VT −1
)

(10.39)

ggd =
∂IGD

∂VGD
=

IS

N ·VT
·e

VGD
N ·VT +

ISR

NR ·VT
·e

VGD
NR ·VT (10.40)

Both equations contain the gate-junction saturation current IS, the gate P-N emission coefficient N and
the temperature voltage VT with the Boltzmann’s constant kB and the electron charge q. The operating
temperature T must be specified in Kelvin.

VT =
kB ·T

q
(10.41)

The controlled drain currents have been defined by Shichman and Hodges [13] for different modes of
operations.

gm =
∂Id

∂VGS
and gds =

∂Id

∂VDS
with VGD = VGS−VDS (10.42)

• normal mode: VDS > 0

– normal mode, cutoff region: VGS−VT h < 0

Id = 0 (10.43)
gm = 0 (10.44)
gds = 0 (10.45)
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– normal mode, saturation region: 0 < VGS−VT h < VDS

Id = β · (1+λVDS) · (VGS−VT h)
2 (10.46)

gm = β · (1+λVDS) ·2(VGS−VT h) (10.47)

gds = β ·λ(VGS−VT h)
2 (10.48)

– normal mode, linear region: VDS < VGS−VT h

Id = β · (1+λVDS) · (2(VGS−VT h)−VDS) ·VDS (10.49)
gm = β · (1+λVDS) ·2 ·VDS (10.50)
gds = β · (1+λVDS) ·2(VGS−VT h−VDS)+β ·λVDS · (2(VGS−VT h)−VDS) (10.51)

• inverse mode: VDS < 0

– inverse mode, cutoff region: VGD−VT h < 0

Id = 0 (10.52)
gm = 0 (10.53)
gds = 0 (10.54)

– inverse mode, saturation region: 0 < VGD−VT h <−VDS

Id =−β · (1−λVDS) · (VGD−VT h)
2 (10.55)

gm =−β · (1−λVDS) ·2(VGD−VT h) (10.56)

gds = β ·λ(VGD−VT h)
2 +β · (1−λVDS) ·2(VGD−VT h) (10.57)

– inverse mode, linear region: −VDS < VGD−VT h

Id = β · (1−λVDS) · (2(VGD−VT h)+VDS) ·VDS (10.58)
gm = β · (1−λVDS) ·2 ·VDS (10.59)
gds = β · (1−λVDS) ·2(VGD−VT h)−β ·λVDS · (2(VGD−VT h)+VDS) (10.60)

The MNA matrix entries for the voltage controlled drain current source can be written as:

G S controlling nodes
D +gm −gm
S −gm +gm

controlled
nodes

With the accompanied DC model shown in fig. 10.7 using the same principles as explained in section 3.3.1
on page 33 it is possible to build the complete MNA matrix of the intrinsic JFET.
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Figure 10.7: accompanied DC model of intrinsic JFET

Applying the rules for creating the MNA matrix of an arbitrary network the complete MNA matrix entries
(admittance matrix and current vector) for the intrinsic junction FET are: ggd +ggs −ggd −ggs

−ggd +gm gds +ggd −gds−gm
−ggs−gm −gds ggs +gds +gm

 ·
VG

VD
VS

=

−IGDeq − IGSeq

+IGDeq − IDSeq

+IGSeq + IDSeq

 (10.61)

with

IGSeq = IGS−ggs ·VGS (10.62)

IGDeq = IGD−ggd ·VGD (10.63)

IDSeq = Id−gm ·VGS−gds ·VDS (10.64)

10.3.2 Small signal model

114



Figure 10.8: small signal model of intrinsic junction FET

The small signal Y-parameter matrix of the intrinsic junction FET writes as follows. It can be converted to
S-parameters.

Y =

YGD +YGS −YGD −YGS
gm−YGD YGD +YDS −YDS−gm
−gm−YGS −YDS YGS +YDS +gm

 (10.65)

with

YGD = ggd + jωCGD (10.66)
YGS = ggs + jωCGS (10.67)
YDS = gds (10.68)

The junction capacitances are modeled with the following equations.

CGD =


Cgd ·

(
1− VGD

Pb

)−M

for VGD ≤ Fc ·Pb

Cgd

(1−Fc)
M ·
(

1+
M · (VGD−Fc ·Pb)

Pb · (1−Fc)

)
for VGD > Fc ·Pb

(10.69)

CGS =


Cgs ·

(
1− VGS

Pb

)−M

for VGS ≤ Fc ·Pb

Cgs

(1−Fc)
M ·
(

1+
M · (VGS−Fc ·Pb)

Pb · (1−Fc)

)
for VGS > Fc ·Pb

(10.70)

10.3.3 Noise model
Both the drain and source resistance RD and RS generate thermal noise characterized by the following
spectral density.

i2RD

∆ f
=

4kBT
RD

and
i2RS

∆ f
=

4kBT
RS

(10.71)
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Figure 10.9: noise model of intrinsic junction FET

Channel noise and flicker noise generated by the DC transconductance gm and current flow from drain to
source is characterized by the following spectral density.

i2ds
∆ f

=
8kBT gm

3
+KF

IAF
DS

f FFE
(10.72)

The noise current correlation matrix (admittance representation) of the intrinsic junction FET can be ex-
pressed by

CY = ∆ f

0 0 0
0 +i2ds −i2ds
0 −i2ds +i2ds

 (10.73)

This matrix representation can be easily converted to the noise-wave representation CS if the small signal
S-parameter matrix is known.

10.3.4 Temperature model
Temperature appears explicitly in the exponential terms of the JFET model equations. In addition, satura-
tion current, gate-junction potential and zero-bias junction capacitances have built-in temperature depen-
dence.

IS (T2) = IS (T1) ·
(

T2

T1

)XT I/N

· exp
[
−e ·EG (300K)

N ·kB ·T2
·
(

1− T2

T1

)]
(10.74)

ISR (T2) = ISR (T1) ·
(

T2

T1

)XT I/NR

· exp
[
−e ·EG (300K)

NR ·kB ·T2
·
(

1− T2

T1

)]
(10.75)

Pb (T2) =
T2

T1
·Pb (T1)−

2 ·kB ·T2

e
· ln
(

T2

T1

)1.5

−
(

T2

T1
·EG (T1)−EG (T2)

)
(10.76)

Cgs (T2) = Cgs (T1) ·
(

1+M ·
(

400 ·10−6 · (T2−T1)−
Pb (T2)−Pb (T1)

Pb (T1)

))
(10.77)

Cgd (T2) = Cgd (T1) ·
(

1+M ·
(

400 ·10−6 · (T2−T1)−
Pb (T2)−Pb (T1)

Pb (T1)

))
(10.78)
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where the EG (T ) dependency has already been described in section 10.2.4 on page 110. Also the threshold
voltage as well as the transconductance parameter have a temperature dependence determined by

VT h (T2) = VT h (T1)+VT hTC · (T2−T1) (10.79)

β(T2) = β(T1) ·1.01βTCE ·(T2−T1) (10.80)

10.3.5 Area dependence of the model
The area factor A used for the JFET model determines the number of equivalent parallel devices of a
specified model. The following parameters are affected by the area factor.

β(A) = β ·A IS (A) = IS ·A (10.81)

RD (A) =
RD

A
RS (A) =

RS

A
(10.82)

Cgs (A) = Cgs ·A Cgd (A) = Cgd ·A (10.83)

10.4 Homo-Junction Bipolar Transistor
The following table contains the model parameters for the BJT (Spice Gummel-Poon) model.

Name Symbol Description Unit Default
Is IS saturation current A 10−16

Nf NF forward emission coefficient 1.0
Nr NR reverse emission coefficient 1.0
Ikf IKF high current corner for forward beta A ∞

Ikr IKR high current corner for reverse beta A ∞

Vaf VAF forward early voltage V ∞

Var VAR reverse early voltage V ∞

Ise ISE base-emitter leakage saturation current A 0
Ne NE base-emitter leakage emission coefficient 1.5
Isc ISC base-collector leakage saturation current A 0
Nc NC base-collector leakage emission coefficient 2.0
Bf BF forward beta 100
Br BR reverse beta 1

Rbm RBm minimum base resistance for high currents Ω 0.0
Irb IRB current for base resistance midpoint A ∞

Rc RC collector ohmic resistance Ω 0.0
Re RE emitter ohmic resistance Ω 0.0
Rb RB zero-bias base resistance (may be high-current Ω 0.0

dependent)
Cje CJE base-emitter zero-bias depletion capacitance F 0.0
Vje VJE base-emitter junction built-in potential V 0.75
Mje MJE base-emitter junction exponential factor 0.33
Cjc CJC base-collector zero-bias depletion capacitance F 0.0
Vjc VJC base-collector junction built-in potential V 0.75
Mjc MJC base-collector junction exponential factor 0.33

Xcjc XCJC fraction of Cjc that goes to internal base pin 1.0
Cjs CJS zero-bias collector-substrate capacitance F 0.0
Vjs VJS substrate junction built-in potential V 0.75
Mjs MJS substrate junction exponential factor 0.0

Fc FC forward-bias depletion capacitance coefficient 0.5
Tf TF ideal forward transit time s 0.0
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Name Symbol Description Unit Default
Xtf XT F coefficient of bias-dependence for Tf 0.0
Vtf VT F voltage dependence of Tf on base-collector voltage V ∞

Itf IT F high-current effect on Tf A 0.0
Ptf ϕT F excess phase at the frequency 1/(2πTF) ◦ 0.0
Tr TR ideal reverse transit time s 0.0
Kf KF flicker noise coefficient 0.0
Af AF flicker noise exponent 1.0

Ffe FFE flicker noise frequency exponent 1.0
Kb KB burst noise coefficient 0.0
Ab AB burst noise exponent 1.0
Fb FB burst noise corner frequency Hz 1.0

Temp T device temperature ◦C 26.85
Xti XT I saturation current exponent 3.0
Xtb XT B temperature exponent for forward- and reverse-beta 0.0
Eg EG energy bandgap eV 1.11

Tnom TNOM temperature at which parameters were extracted ◦C 26.85
Area A default area for bipolar transistor 1.0

10.4.1 Large signal model

Figure 10.10: bipolar transistor symbol and large signal model for vertical device

The SGP (SPICE Gummel-Poon) model is basically a transport model, i.e. the voltage dependent ideal
transfer currents (forward IF and backward IR) are reference currents in the model. The ideal base current
parts are defined dependent on the ideal transfer currents. The ideal forward transfer current starts flowing
when applying a positive control voltage at the base-emitter junction. It is defined by:

IF = IS ·
(

e
VBE

NF ·VT −1
)

(10.84)
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The ideal base current components are defined by the ideal transfer currents. The non-ideal components
are independently defined by dedicated saturation currents and emission coefficients.

IBEI =
IF

BF
gBEI =

∂IBEI

∂VBE
=

IS

NF ·VT ·BF
·e

VBE
NF ·VT (10.85)

IBEN = ISE ·
(

e
VBE

NE ·VT −1
)

gBEN =
∂IBEN

∂VBE
=

ISE

NE ·VT
·e

VBE
NE ·VT (10.86)

IBE = IBEI + IBEN (10.87)
gπ = gBE = gBEI +gBEN (10.88)

The ideal backward transfer current arises when applying a positive control voltage at the base-collector
junction (e.g. in the active inverse mode). It is defined by:

IR = IS ·
(

e
VBC

NR ·VT −1
)

(10.89)

Again, the ideal base current component through the base-collector junction is defined in reference to the
ideal backward transfer current and the non-ideal component is defined by a dedicated saturation current
and emission coefficient.

IBCI =
IR

BR
gBCI =

∂IBCI

∂VBC
=

IS

NR ·VT ·BR
·e

VBC
NR ·VT (10.90)

IBCN = ISC ·
(

e
VBC

NC ·VT −1
)

gBCN =
∂IBCN

∂VBC
=

ISC

NC ·VT
·e

VBC
NC ·VT (10.91)

IBC = IBCI + IBCN (10.92)
gµ = gBC = gBCI +gBCN (10.93)

With these definitions it is possible to calculate the overall base current flowing into the device using all
the base current components.

IB = IBE + IBC = IBEI + IBEN + IBCI + IBCN (10.94)

The overall transfer current IT can be calculated using the normalized base charge QB and the ideal forward
and backward transfer currents.

IT = IT F − IT R =
IF − IR

QB
(10.95)

The normalized base charge QB has no dimension and has the value 1 for VBE = VBC = 0. It is used to
model two effects: the influence of the base width modulation on the transfer current (Early effect) and the
ideal transfer currents deviation at high currents, i.e. the decreasing current gain at high currents.

QB =
Q1

2
·
(

1+
√

1+4 ·Q2

)
(10.96)

The Q1 term is used to describe the Early effect and Q2 is responsible for the high current effects.

Q1 =
1

1− VBC

VAF
− VBE

VAR

and Q2 =
IF

IKF
+

IR

IKR
(10.97)

The transfer current IT depends on VBE and VBC by the normalized base charge QB and the forward transfer
current IF and the backward transfer current IR. That is why both of the partial derivatives are required.
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The forward transconductance gm f of the transfer current IT is obtained by differentiating it with respect to
VBE . The reverse transconductance gmr can be calculated by differentiating the transfer current with respect
to VBC.

gm f =
∂IT

∂VBE
=

∂IT F

∂VBE
− ∂IT R

∂VBE
=

1
QB
·
(

+gIF − IT ·
∂QB

∂VBE

)
(10.98)

gmr =
∂IT

∂VBC
=

∂IT F

∂VBC
− ∂IT R

∂VBC
=

1
QB
·
(
−gIR− IT ·

∂QB

∂VBC

)
(10.99)

With gIF being the forward conductance of the ideal forward transfer current and gIR being the reverse
conductance of the ideal backward transfer current.

gIF =
∂IF

∂VBE
= gBEI ·BF (10.100)

gIR =
∂IR

∂VBC
= gBCI ·BR (10.101)

The remaining derivatives in eq. (10.98), (10.99), (10.119) and (10.120) can be written as

∂QB

∂VBE
= Q1 ·

(
QB

VAR
+

gIF

IKF ·
√

1+4 ·Q2

)
(10.102)

∂QB

∂VBC
= Q1 ·

(
QB

VAF
+

gIR

IKR ·
√

1+4 ·Q2

)
(10.103)

For the calculation of the bias dependent base resistance RBB′ there are two different ways within the
SGP model. If the model parameter IRB is not given it is determined by the normalized base charge QB.
Otherwise IRB specifies the base current at which the base resistance drops half way to the minimum (i.e.
the constant component) base resistance RBm.

RBB′ =


RBm +

RB−RBm

QB
for IRB = ∞

RBm +3 · (RB−RBm) · tanz− z
z · tan2 z

for IRB 6= ∞

(10.104)

with z =

√
1+

144
π2 ·

IB

IRB
−1

24
π2 ·

√
IB

IRB

(10.105)
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Figure 10.11: accompanied DC model of intrinsic BJT

With the accompanied DC model shown in fig. 10.11 the MNA matrix entries as well as the current vector
entries differ.

gµ +gπ −gµ −gπ 0
−gµ +gm f −gmr gµ +gmr −gm f 0
−gπ−gm f +gmr −gmr gπ +gm f 0

0 0 0 0

 ·


VB
VC
VE
VS

=


−IBEeq − IBCeq

+IBCeq − ICEeq

+IBEeq + ICEeq

0

 (10.106)

IBEeq = IBE −gπ ·VBE (10.107)

IBCeq = IBC−gµ ·VBC (10.108)

ICEeq = IT −gm f ·VBE +gmr ·VBC (10.109)

In order to implement the influence of the excess phase parameter ϕT F – denoting the phase shift of the
current gain at the transit frequency – the method developed by P.B. Weil and L.P. McNamee [14] can be
used. They propose to use a second-order Bessel polynomial to modify the forward transfer current:

IT x = IT ·Φ(s) = IT ·
3 ·ω2

0

s2 +3 ·ω0 ·s+3 ·ω2
0

(10.110)

This polynomial is formulated to closely resemble a time domain delay for a Gaussian curve which is
similar to the physical phenomenon exhibited by bipolar transistor action.

Applying the inverse Laplace transformation to eq. (10.110) and using finite difference methods the transfer
current can be written as

In+1
T x = C1 · In+1

T +C2 · In
T x−C3 · In−1

T x (10.111)

with

C1 =
3 ·ω2

0 ·∆t2

1+3 ·ω0 ·∆t +3 ·ω2
0 ·∆t2

(10.112)

C2 =
2+3 ·ω0 ·∆t

1+3 ·ω0 ·∆t +3 ·ω2
0 ·∆t2

(10.113)

C3 =
1

1+3 ·ω0 ·∆t +3 ·ω2
0 ·∆t2

(10.114)
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and
ω0 =

π

180
· 1

ϕT F ·TF
(10.115)

The appropiate modified derivative writes as

gn+1
mx = C1 ·gn+1

m (10.116)

It should be noted that the excess phase implementation during the transient analysis (and thus in the AC
analysis as well) holds for the forward part of the transfer current only.

With non-equidistant inegration time steps during transient analysis present eqs. (10.113) and (10.114)
yield

C2 =
1+∆t/∆t1 +3 ·ω0 ·∆t

1+3 ·ω0 ·∆t +3 ·ω2
0 ·∆t2

(10.117)

C3 =
∆t/∆t1

1+3 ·ω0 ·∆t +3 ·ω2
0 ·∆t2

(10.118)

whereas ∆t denotes the current time step and ∆t1 the previous one.

Original SPICE model

The original SGP model implementation defines the output conductance g0 and the transconductance value
gm. Thus the SPICE simulator is able to compute the BJT circuit using a single voltage controlled current
source. These definitions are given here.

g0 =
∂IT

∂VCE

∣∣∣∣
VBE=const

=− ∂IT

∂VBC
=−gmr =

1
QB
·
(

gIR + IT ·
∂QB

∂VBC

)
(10.119)

gm =
∂IT

∂VBE

∣∣∣∣
VCE=const

=
∂IT

∂VBE
+

∂IT

∂VBC
= gm f +gmr =

1
QB
·
(

gIF − IT ·
∂QB

∂VBE

)
−g0 (10.120)

There are two possible ways to compute the MNA matrix of the SGP model. One using a single voltage
controlled current source with an accompanied output conductance and the other using two independent
voltage controlled current sources (see fig.10.11). Both possibilities are equivalent.

Figure 10.12: accompanied DC model of intrinsic BJT in SPICE
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With the accompanied DC model shown in fig. 10.12 it is possible to build the complete MNA matrix of
the intrinsic BJT and the current vector.

gµ +gπ −gµ −gπ 0
−gµ +gm g0 +gµ −g0−gm 0
−gπ−gm −g0 gπ +g0 +gm 0

0 0 0 0

 ·


VB
VC
VE
VS

=


−IBEeq − IBCeq

+IBCeq − ICEeq

+IBEeq + ICEeq

0

 (10.121)

IBEeq = IBE −gπ ·VBE (10.122)

IBCeq = IBC−gµ ·VBC (10.123)

ICEeq = IT −gm ·VBE −g0 ·VCE (10.124)

10.4.2 Small signal model
Equations for the real valued conductances in both equivalent circuits for the intrinsic BJT have already
been given.

Figure 10.13: small signal model of intrinsic BJT

The junctions depletion capacitances in the SGP model write as follows:

CBEdep =


CJE ·

(
1− VBE

VJE

)−MJE

for VBE ≤ FC ·VJE

CJE

(1−FC)MJE
·
(

1+
MJE · (VBE −FC ·VJE)

VJE · (1−FC)

)
for VBE > FC ·VJE

(10.125)

CBCdep =


CJC ·

(
1− VBC

VJC

)−MJC

for VBC ≤ FC ·VJC

CJC

(1−FC)MJC
·
(

1+
MJC · (VBC−FC ·VJC)

VJC · (1−FC)

)
for VBC > FC ·VJC

(10.126)

CCSdep =


CJS ·

(
1− VCS

VJS

)−MJS

for VCS ≤ 0

CJS ·
(

1+MJS ·
VCS

VJS

)
for VCS > 0

(10.127)
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The base-collector depletion capacitance is split into two components: an external and an internal.

CBCIdep = XCJC ·CBCdep (10.128)

CBCXdep = (1−XCJC) ·CBCdep (10.129)

The base-emitter diffusion capacitance can be obtained using the following equation.

CBEdi f f =
∂QBE

∂VBE
with QBE =

IF

QB
·TFF (10.130)

Thus the diffusion capacitance depends on the bias-dependent effective forward transit time TFF which is
defined as:

TFF = TF ·

(
1+XT F ·

(
IF

IF + IT F

)2

· exp
(

VBC

1.44 ·VT F

))
(10.131)

With
∂TFF

∂VBE
=

TF ·XT F ·2 ·gIF · IF · IT F

(IF + IT F)3 · exp
(

VBC

1.44 ·VT F

)
(10.132)

the base-emitter diffusion capacitance can finally be written as:

CBEdi f f =
∂QBE

∂VBE
=

1
QB
·
(

IF ·
∂TFF

∂VBE
+TFF ·

(
gIF −

IF

QB
· ∂QB

∂VBE

))
(10.133)

Because the base-emitter charge QBE in eq. (10.130) also depends on the voltage across the base-collector
junction, it is necessary to find the appropriate derivative as well:

CBEBC =
∂QBE

∂VBC
=

IF

QB
·
(

∂TFF

∂VBC
− TFF

QB
· ∂QB

∂VBC

)
(10.134)

which turns out to be a so called transcapacitance. It additionally requires:

∂TFF

∂VBC
=

TF ·XT F

1.44 ·VT F
·
(

IF

IF + IT F

)2

· exp
(

VBC

1.44 ·VT F

)
(10.135)

The base-collector diffusion capacitance writes as follows:

CBCdi f f =
∂QBC

∂VBC
= TR ·gIR (10.136)

To take the excess phase parameter ϕT F into account the forward transconductance is going to be a complex
quantity.

gm f = gm f ·e− jϕex with ϕex =
(

π

180
·ϕT F

)
·TF ·2π f (10.137)

With these calculations made it is now possible to define the small signal Y-parameters of the intrinsic BJT.
The Y-parameter matrix can be converted to S-parameters.

Y =


YBC +YBE +YBEBC −YBC−YBEBC −YBE 0
gm f −YBC−gmr YCS +YBC +gmr −gm f −YCS

gmr−gm f −YBE −YBEBC −gmr +YBEBC YBE +gm f 0
0 −YCS 0 YCS

 (10.138)

with

YBC = gµ + jω
(

CBCIdep +CBCdi f f

)
(10.139)

YBE = gπ + jω
(

CBEdep +CBEdi f f

)
(10.140)

YCS = jω ·CCSdep (10.141)

YBEBC = jω ·CBEBC (10.142)

The external capacitance CBCX connected between the internal collector node and the external base node is
separately modeled if it is non-zero and if there is a non-zero base resistance.
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Original SPICE model

The original SPICE variant of the above small signal equivalent circuit with the transconductance gm and
the output conductance g0 is depicted in fig. 10.14.

Figure 10.14: small signal model of intrinsic BJT in SPICE

The appropriate MNA matrix (Y-parameters) during the small signal analysis can be written as

Y =


YBC +YBE +YBEBC −YBC−YBEBC −YBE 0

gm−YBC YCS +YBC +g0 −gm−g0 −YCS
−gm−YBE −YBEBC −g0 +YBEBC YBE +gm +g0 0

0 −YCS 0 YCS

 (10.143)

10.4.3 Noise model
The ohmic resistances RBB′ , RC and RE generate thermal noise characterized by the following spectral
densities.

i2RBB′

∆ f
=

4kBT
RBB′

and
i2RC

∆ f
=

4kBT
RC

and
i2RE

∆ f
=

4kBT
RE

(10.144)
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Figure 10.15: noise model of intrinsic BJT

Shot noise, flicker noise and burst noise generated by the DC base current is characterized by the spectral
density

i2b
∆ f

= 2eIBE +KF
IAF
BE

f FFE
+KB

IAB
BE

1+
(

f
FB

)2 (10.145)

The shot noise generated by the DC collector to emitter current flow is characterized by the spectral density

i2c
∆ f

= 2eIT (10.146)

The noise current correlation matrix of the four port intrinsic bipolar transistor can then be written as

CY = ∆ f


+i2b 0 −i2b 0
0 +i2c −i2c 0
−i2b −i2c +i2c + i2b 0
0 0 0 0

 (10.147)

This matrix representation can be converted to the noise wave correlation matrix representation CS using
the formulas given in section 2.4.2 on page 23.

10.4.4 Temperature model
Temperature appears explicitly in the exponential term of the bipolar transistor model equations. In addi-
tion, the model parameters are modified to reflect changes in the temperature. The reference temperature
T1 in these equations denotes the nominal temperature TNOM specified by the bipolar transistor model.
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IS (T2) = IS (T1) ·
(

T2

T1

)XT I

· exp
[
−e ·EG (300K)

kB ·T2
·
(

1− T2

T1

)]
(10.148)

VJE (T2) =
T2

T1
·VJE (T1)−

2 ·kB ·T2

e
· ln
(

T2

T1

)1.5

−
(

T2

T1
·EG (T1)−EG (T2)

)
(10.149)

VJC (T2) =
T2

T1
·VJC (T1)−

2 ·kB ·T2

e
· ln
(

T2

T1

)1.5

−
(

T2

T1
·EG (T1)−EG (T2)

)
(10.150)

VJS (T2) =
T2

T1
·VJS (T1)−

2 ·kB ·T2

e
· ln
(

T2

T1

)1.5

−
(

T2

T1
·EG (T1)−EG (T2)

)
(10.151)

where the EG (T ) dependency has already been described in section 10.2.4 on page 110. The temperature
dependence of BF and BR is determined by

BF (T2) = BF (T1) ·
(

T2

T1

)XT B

(10.152)

BR (T2) = BR (T1) ·
(

T2

T1

)XT B

(10.153)

Through the parameters ISE and ISC, respectively, the temperature dependence of the non-ideal saturation
currents is determined by

ISE (T2) = ISE (T1) ·
(

T2

T1

)−XT B

·
[

IS (T2)
IS (T1)

]1/NE

(10.154)

ISC (T2) = ISC (T1) ·
(

T2

T1

)−XT B

·
[

IS (T2)
IS (T1)

]1/NC

(10.155)

The temperature dependence of the zero-bias depletion capacitances CJE , CJC and CJS are determined by

CJE (T2) = CJE (T1) ·
(

1+MJE ·
(

400 ·10−6 · (T2−T1)−
VJE (T2)−VJE (T1)

VJE (T1)

))
(10.156)

CJC (T2) = CJC (T1) ·
(

1+MJC ·
(

400 ·10−6 · (T2−T1)−
VJC (T2)−VJC (T1)

VJC (T1)

))
(10.157)

CJS (T2) = CJS (T1) ·
(

1+MJS ·
(

400 ·10−6 · (T2−T1)−
VJS (T2)−VJS (T1)

VJS (T1)

))
(10.158)

10.4.5 Area dependence of the model
The area factor A used in the bipolar transistor model determines the number of equivalent parallel devices
of a specified model. The bipolar transistor model parameters affected by the A factor are:

IS (A) = IS ·A (10.159)
ISE (A) = ISE ·A ISC (A) = ISC ·A (10.160)
IKF (A) = IKF ·A IKR (A) = IKR ·A (10.161)
IRB (A) = IRB ·A IT F (A) = IT F ·A (10.162)

CJE (A) = CJE ·A CJC (A) = CJC ·A (10.163)
CJS (A) = CJS ·A (10.164)

RB (A) =
RB

A
RBm (A) =

RBm

A
(10.165)

RE (A) =
RE

A
RC (A) =

RC

A
(10.166)
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10.5 MOS Field-Effect Transistor

Figure 10.16: vertical section of integrated MOSFET
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Figure 10.17: four types of MOS field effect transistors and their symbols

There are four different types of MOS field effect transistors as shown in fig. 10.17 all covered by the
model going to be explained here. The “First Order Model” is a physical model with the drain current
equations according to Harold Shichman and David A. Hodges [13].

The following table contains the model and device parameters for the MOSFET level 1.

Name Symbol Description Unit Default Typical
Is IS bulk junction saturation current A 10−14 10−15

N N bulk junction emission coefficient 1.0
Vt0 VT 0 zero-bias threshold voltage V 0.0 0.7

Lambda λ channel-length modulation parameter 1/V 0.0 0.02
Kp KP transconductance coefficient A/V2 2 ·10−5 6 ·10−5

Gamma γ bulk threshold
√

V 0.0 0.37
Phi Φ surface potential V 0.6 0.65
Rd RD drain ohmic resistance Ω 0.0 1.0
Rs RS source ohmic resistance Ω 0.0 1.0
Rg RG gate ohmic resistance Ω 0.0

L L channel length m 100µ

Ld LD lateral diffusion length m 0.0 10−7

W W channel width m 100µ

Tox TOX oxide thickness m 0.1µ 2 ·10−8

Cgso CGSO gate-source overlap capacitance per meter
of channel width

F/m 0.0 4 ·10−11

Cgdo CGDO gate-drain overlap capacitance per meter of
channel width

F/m 0.0 4 ·10−11

Cgbo CGBO gate-bulk overlap capacitance per meter of
channel length

F/m 0.0 2 ·10−10

Cbd CBD zero-bias bulk-drain junction capacitance F 0.0 6 ·10−17

Cbs CBS zero-bias bulk-source junction capacitance F 0.0 6 ·10−17

Pb ΦB bulk junction potential V 0.8 0.87
Mj MJ bulk junction bottom grading coefficient 0.5 0.5
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Name Symbol Description Unit Default Typical
Fc FC bulk junction forward-bias depletion ca-

pacitance coefficient
0.5

Cjsw CJSW zero-bias bulk junction periphery capaci-
tance per meter of junction perimeter

F/m 0.0

Mjsw MJSW bulk junction periphery grading coefficient 0.33 0.33
Tt TT bulk transit time s 0.0
Kf KF flicker noise coefficient 0.0
Af AF flicker noise exponent 1.0

Ffe FFE flicker noise frequency exponent 1.0
Nsub NSUB substrate (bulk) doping density 1/cm3 0.0 4 ·1015

Nss NSS surface state density 1/cm2 0.0 1010

Tpg TPG gate material type (0 = alumina, -1 = same
as bulk, 1 = opposite to bulk)

1

Uo µ0 surface mobility cm2/Vs 600.0 400.0
Rsh RSH drain and source diffusion sheet resistance Ω/square 0.0 10.0
Nrd NRD number of equivalent drain squares 1
Nrs NRS number of equivalent source squares 1
Cj CJ zero-bias bulk junction bottom capacitance

per square meter of junction area
F/m2 0.0 2 ·10−4

Js JS bulk junction saturation current per square
meter of junction area

A/m2 0.0 10−8

Ad AD drain diffusion area m2 0.0
As AS source diffusion area m2 0.0
Pd PD drain junction perimeter m 0.0
Ps PS source junction perimeter m 0.0

Temp T device temperature ◦C 26.85
Tnom TNOM parameter measurement temperature ◦C 26.85

10.5.1 Large signal model
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Figure 10.18: n-channel MOSFET large signal model

Beforehand some useful abbreviation are made to simplify the DC current equations.

Le f f = L−2 ·LD (10.167)

β = KP ·
W

Le f f
(10.168)

The bias-dependent threshold voltage depends on the bulk-source voltage VBS or the bulk-drain voltage VBD
depending on the mode of operation.

VT h = VT 0 +

 γ ·
(√

Φ−VBS−
√

Φ

)
for VDS ≥ 0, i.e. VBS ≥VBD

γ ·
(√

Φ−VBD−
√

Φ

)
for VDS < 0, i.e. VBD > VBS

(10.169)

The following equations describe the DC current behaviour of a N-channel MOSFET in normal mode, i.e.
VDS > 0, according to Shichman and Hodges.

• cutoff region: VGS−VT h < 0

Id = 0 (10.170)
gds = 0 (10.171)
gm = 0 (10.172)

gmb = 0 (10.173)
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• saturation region: 0 < VGS−VT h < VDS

Id = β/2 · (1+λVDS) · (VGS−VT h)
2 (10.174)

gds = β/2 ·λ(VGS−VT h)
2 (10.175)

gm = β · (1+λVDS)(VGS−VT h) (10.176)

gmb = gm ·
γ

2
√

Φ−VBS
(10.177)

• linear region: VDS < VGS−VT h

Id = β · (1+λVDS) · (VGS−VT h−VDS/2) ·VDS (10.178)
gds = β · (1+λVDS) · (VGS−VT h−VDS)+β ·λVDS · (VGS−VT h−VDS/2) (10.179)
gm = β · (1+λVDS) ·VDS (10.180)

gmb = gm ·
γ

2
√

Φ−VBS
(10.181)

with

gds =
∂Id

∂VDS
and gm =

∂Id

∂VGS
and gmb =

∂Id

∂VBS
(10.182)

In the inverse mode of operation, i.e. VDS < 0, the same equations can be applied with the following
modifications. Replace VBS with VBD, VGS with VGD and VDS with−VDS. The drain current Id gets reversed.
Furthermore the transconductances alter their controlling nodes, i.e.

gm =
∂Id

∂VGD
and gmb =

∂Id

∂VBD
(10.183)

The current equations of the two parasitic diodes at the bulk node and their derivatives write as follows.

IBD = ISD ·
(

e
VBD

N ·VT −1
)

gbd =
∂IBD

∂VBD
=

ISD

N ·VT
·e

VBD
N ·VT (10.184)

IBS = ISS ·
(

e
VBS

N ·VT −1
)

gbs =
∂IBS

∂VBS
=

ISS

N ·VT
·e

VBS
N ·VT (10.185)

with
ISD = IS and ISS = IS (10.186)
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Figure 10.19: accompanied DC model of intrinsic MOSFET

With the accompanied DC model shown in fig. 10.19 it is possible to form the MNA matrix and the current
vector of the intrinsic MOSFET device.

0 0 0 0
gm gds +gbd −gds−gm−gmb gmb−gbd
−gm −gds gbs +gds +gm +gmb −gbs−gmb

0 −gbd −gbs gbs +gbd

 ·


VG
VD
VS
VB

=


0

+IBDeq − IDSeq

+IBSeq + IDSeq

−IBDeq − IBSeq

 (10.187)

IBDeq = IBD−gbd ·VBD (10.188)

IBSeq = IBS−gbs ·VBS (10.189)

IDSeq = Id−gm ·VGS−gmb ·VBS−gds ·VDS (10.190)

10.5.2 Physical model
There are electrical parameters as well as physical and geometry parameters in the set of model parameters
for the MOSFETs “First Order Model”. Some of the electrical parameters can be derived from the geometry
and physical parameters.

The oxide capacitance per square meter of the channel area can be computed as

C′ox = ε0 ·
εox

Tox
with εox = εSiO2 = 3.9 (10.191)

Then the overall oxide capacitance can be written as

Cox = C′ox ·W ·Le f f (10.192)

The transconductance coefficient KP can be calculated using

KP = µ0 ·C′ox (10.193)

The surface potential Φ is given by (with temperature voltage VT )

Φ = 2 ·VT · ln
(

NSUB

ni

)
with the intrinsic density ni = 1.45 ·10161/m3 (10.194)
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Equation (10.194) holds for acceptor concentrations NA (NSUB) essentially greater than the donor concen-
tration ND. The bulk threshold γ (also sometimes called the body effect coefficient) is

γ =
√

2 ·e ·εSi ·ε0 ·NSUB

C′ox
with εSi = 11.7 (10.195)

And finally the zero-bias threshold voltage VT 0 writes as follows.

VT 0 = VFB +Φ+ γ ·
√

Φ (10.196)

Whereas VFB denotes the flat band voltage consisting of the work function difference ΦMS between the gate
and substrate material and an additional potential due to the oxide surface charge.

VFB = ΦMS−
e ·NSS

C′ox
(10.197)

The temperature dependent bandgap potential EG of silicon (substrate material Si) writes as follows. With
T = 290K the bandgap is approximately 1.12eV .

EG (T ) = 1.16− 7.02 ·10−4 ·T 2

T +1108
(10.198)

The work function difference ΦMS gets computed dependent on the gate conductor material. This can be
either alumina (ΦM = 4.1eV ), n-polysilicon (ΦM ≈ 4.15eV ) or p-polysilicon (ΦM ≈ 5.27eV ). The work
function of a semiconductor, which is the energy difference between the vacuum level and the Fermi level
(see fig. 10.20), varies with the doping concentration.

ΦMS = ΦM−ΦS = ΦM−
(

4.15+
1
2

EG +
1
2

Φ

)
(10.199)

ΦM =


4.1 for TPG = +0, i.e. alumina
4.15 for TPG = +1, i.e. opposite to bulk
4.15+EG for TPG =−1, i.e. same as bulk

(10.200)

Figure 10.20: energy band diagrams of isolated (flat band) MOS materials

The expression in eq. (10.199) is visualized in fig. 10.20. The abbreviations denote

χAl electron affinity of alumina = 4.1eV
χSi electron affinity of silicon = 4.15eV
E0 vacuum level
EC conduction band
EV valence band
EF Fermi level
EI intrinsic Fermi level

EG bandgap of silicon ≈ 1.12eV at room temperature
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Please note that the potential 1/2 ·Φ is positive in p-MOS and negative in n-MOS as the following equation
reveals.

ΦF =
EF −EI

e
(10.201)

When the gate conductor material is a heavily doped polycrystalline silicon (also called polysilicon) then
the model assumes that the Fermi level of this semiconductor is the same as the conduction band (for n-
poly) or the valence band (for p-poly). In alumina the Fermi level, valence and conduction band all equal
the electron affinity.

If the zero-bias bulk junction bottom capacitance per square meter of junction area CJ is not given it can be
computed as follows.

CJ =
√

εSi ·ε0 ·e ·NSUB

2 ·ΦB
(10.202)

That’s it for the physical parameters. The geometry parameters account for the electrical parameters per
length, area or volume. Thus the MOS model is scalable.

The diffusion resistances at drain and gate are computed as follows. The sheet resistance RSH refers to the
thickness of the diffusion area.

RD = NRD ·RSH and RS = NRS ·RSH (10.203)

If the bulk junction saturation current per square meter of the junction area JS and the drain and source
areas are given the according saturation currents are calculated with the following equations.

ISD = AD ·JS and ISS = AS ·JS (10.204)

If the parameters CBD and CBS are not given the zero-bias depletion capacitances for the bottom and sidewall
capacitances are computed as follows.

CBD = CJ ·AD (10.205)
CBS = CJ ·AS (10.206)

CBDS = CJSW ·PD (10.207)
CBSS = CJSW ·PS (10.208)

10.5.3 Small signal model
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Figure 10.21: small signal model of intrinsic MOSFET

The bulk-drain and bulk-source capacitances in the MOSFET model split into three parts: the junctions
depletion capacitance which consists of an area and a sidewall part and the diffusion capacitance.

CBDdep =


CBD ·

(
1− VBD

ΦB

)−MJ

for VBD ≤ FC ·ΦB

CBD

(1−FC)MJ
·
(

1+
MJ · (VBD−FC ·ΦB)

ΦB · (1−FC)

)
for VBD > FC ·ΦB

(10.209)

CBDSdep =


CBDS ·

(
1− VBD

ΦB

)−MJSW

for VBD ≤ FC ·ΦB

CBDS

(1−FC)MJSW
·
(

1+
MJSW · (VBD−FC ·ΦB)

ΦB · (1−FC)

)
for VBD > FC ·ΦB

(10.210)

CBSdep =


CBS ·

(
1− VBS

ΦB

)−MJ

for VBS ≤ FC ·ΦB

CBS

(1−FC)MJ
·
(

1+
MJ · (VBS−FC ·ΦB)

ΦB · (1−FC)

)
for VBS > FC ·ΦB

(10.211)

CBSSdep =


CBSS ·

(
1− VBS

ΦB

)−MJSW

for VBS ≤ FC ·ΦB

CBSS

(1−FC)MJSW
·
(

1+
MJSW · (VBS−FC ·ΦB)

ΦB · (1−FC)

)
for VBS > FC ·ΦB

(10.212)

The diffusion capacitances of the bulk-drain and bulk-source junctions are determined by the transit time
of the minority charges through the junction.

CBDdi f f = gbd ·TT (10.213)

CBSdi f f = gbs ·TT (10.214)

Charge storage in the MOSFET consists of capacitances associated with parasitics and the intrinsic device.
Parasitic capacitances consist of three constant overlap capacitances. The intrinsic capacitances consist of
the nonlinear thin-oxide capacitance, which is distributed among the gate, drain, source and bulk regions.
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The MOS gate capacitances, as a nonlinear function of the terminal voltages, are modeled by J.E. Meyer’s
piece-wise linear model [15].

The bias-dependent gate-oxide capacitances distribute according to the Meyer model [15] as follows.

• cutoff regions: VGS−VT h < 0

– VGS−VT h ≤−Φ

CGS = 0 (10.215)
CGD = 0 (10.216)
CGB = Cox (10.217)

– −Φ < VGS−VT h ≤−Φ/2

CGS = 0 (10.218)
CGD = 0 (10.219)

CGB =−Cox ·
VGS−VT h

Φ
(10.220)

– −Φ/2 < VGS−VT h ≤ 0

CGS =
2
3
·Cox +

4
3
·Cox ·

VGS−VT h

Φ
(10.221)

CGD = 0 (10.222)

CGB =−Cox ·
VGS−VT h

Φ
(10.223)

• saturation region: 0 < VGS−VT h < VDS

CGS =
2
3
·Cox (10.224)

CGD = 0 (10.225)
CGB = 0 (10.226)

• linear region: VDS < VGS−VT h

CGS =
2
3
·Cox ·

(
1− (VDsat −VDS)

2

(2 ·VDsat −VDS)
2

)
(10.227)

CGD =
2
3
·Cox ·

(
1− V 2

Dsat

(2 ·VDsat −VDS)
2

)
(10.228)

CGB = 0 (10.229)

with

VDsat =

{
VGS−VT h for VGS−VT h > 0
0 otherwise

(10.230)

In the inverse mode of operation VGS and VGD need to be exchanged, VDS changes its sign, then the above
formulas can be applied as well.
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The constance overlap capacitances compute as follows.

CGSOV L = CGSO ·W (10.231)
CGDOV L = CGDO ·W (10.232)
CGBOV L = CGBO ·Le f f (10.233)

With these definitions it is possible to form the small signal Y-parameter matrix of the intrinsic MOSFET
device in an operating point which can be converted into S-parameters.

Y =


YGS +YGD +

YGB

−YGD −YGS −YGB

gm−YGD YGD +YBD +YDS −YDS−gm−gmb −YBD +gmb
−gm−YGS −YDS YGS +YDS +

YBS +gm +gmb

−YBS−gmb

−YGB −YBD −YBS YBD +YBS +YGB

 (10.234)

with

YGS = jω(CGS +CGSOV L) (10.235)
YGD = jω(CGD +CGDOV L) (10.236)
YGB = jω(CGB +CGBOV L) (10.237)

YBD = gbd + jω
(

CBDdep +CBDSdep +CBDdi f f

)
(10.238)

YBS = gbs + jω
(

CBSdep +CBSSdep +CBSdi f f

)
(10.239)

YDS = gds (10.240)

10.5.4 Noise model
The thermal noise generated by the external resistors RG, RS and RD is characterized by the following
spectral density.

i2RG

∆ f
=

4kBT
RG

and
i2RD

∆ f
=

4kBT
RD

and
i2RS

∆ f
=

4kBT
RS

(10.241)
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Figure 10.22: noise model of intrinsic MOSFET

Channel and flicker noise generated by the DC transconductance gm and current flow from drain to source
is characterized by the spectral density

i2ds
∆ f

=
8kBT gm

3
+KF

IAF
DS

f FFE
(10.242)

The noise current correlation matrix (admittance representation) of the intrinsic MOSFET can be expressed
as

CY = ∆ f


0 0 0 0
0 +i2ds −i2ds 0
0 −i2ds +i2ds 0
0 0 0 0

 (10.243)

This matrix representation can be easily converted to the noise-wave representation CS if the small signal
S-parameter matrix is known.

10.5.5 Temperature model
Temperature affects some MOS model parameters which are updated according to the new temperature.
The reference temperature T1 in the following equations denotes the nominal temperature TNOM specified
by the MOS transistor model. The temperature dependence of KP and µ0 is determined by

KP (T2) = KP (T1) ·
(

T1

T2

)1.5

(10.244)

µ0 (T2) = µ0 (T1) ·
(

T1

T2

)1.5

(10.245)

The effect of temperature on ΦB and Φ is modeled by

Φ(T2) =
T2

T1
·Φ(T1)−

2 ·kB ·T2

e
· ln
(

T2

T1

)1.5

−
(

T2

T1
·EG (T1)−EG (T2)

)
(10.246)
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where the EG (T ) dependency has already been described in section 10.2.4 on page 110. The temperature
dependence of CBD, CBS, CJ and CJSW is described by the following relations

CBD (T2) = CBD (T1) ·
(

1+MJ ·
(

400 ·10−6 · (T2−T1)−
ΦB (T2)−ΦB (T1)

ΦB (T1)

))
(10.247)

CBS (T2) = CBS (T1) ·
(

1+MJ ·
(

400 ·10−6 · (T2−T1)−
ΦB (T2)−ΦB (T1)

ΦB (T1)

))
(10.248)

CJ (T2) = CJ (T1) ·
(

1+MJ ·
(

400 ·10−6 · (T2−T1)−
ΦB (T2)−ΦB (T1)

ΦB (T1)

))
(10.249)

CJSW (T2) = CJSW (T1) ·
(

1+MJSW ·
(

400 ·10−6 · (T2−T1)−
ΦB (T2)−ΦB (T1)

ΦB (T1)

))
(10.250)

The temperature dependence of IS is given by the relation

IS (T2) = IS (T1) · exp
[
− e

kB ·T2
·
(

T2

T1
·EG (T1)−EG (T2)

)]
(10.251)

An analogue dependence holds for JS.

10.6 Models for boolean devices
Logical (boolean) functions (OR, AND, XOR etc.) can be modeled using macro models. Here, each input
gets the transfer characteristic and its derivative described as follows:

ui = tanh(10 ·(uin−0.5)) (10.252)

u′i = 10 ·
(
1− tanh2(10 ·(uin−0.5))

)
(10.253)

The resulting voltages ui for each input are combined to create the wanted function for a device with N
inputs:

Inverter: uout = 0.5 ·(1−ui) (10.254)

NOR: uout =
N

∑
m

2
1−ui,m

(10.255)

OR: uout = 1−uout,NOR (10.256)

AND: uout =
N

∑
m

2
1+ui,m

(10.257)

NAND: uout = 1−uout,AND (10.258)

XOR: uout = 0.5 ·
(

1−∏
m
−ui,m

)
(10.259)

XNOR: uout = 0.5 ·
(

1+∏
m

ui,m

)
(10.260)

The above-mentioned functions model devices with 0V as logical low-level and 1V as logical high-level.
Of course, they can be easily transformed into higher voltage levels by multiplying the desired high-level
voltage to the output voltage uout and dividing the input voltages uin by the desired high-level voltage.
Note: The derivatives also get uin divided by the desired high-level voltage, but they are not multiplied by
the desired high-level voltage.
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To perform a simulation on these devices, the first derivatives are also needed:

Inverter:
∂uout

∂uin
=−0.5 ·u′i (10.261)

OR:
∂uout

∂uin,n
=

2 ·N ·u′i,n(
(1−ui,n) · ∑

m

2
1−ui,m

)2 (10.262)

NOR:
∂uout

∂uin,n
=− ∂uout

∂uin,n

∣∣∣∣
OR

(10.263)

AND:
∂uout

∂uin,n
=

2 ·N ·u′i,n(
(1+ui,n) · ∑

m

2
1+ui,m

)2 (10.264)

NAND:
∂uout

∂uin,n
=− ∂uout

∂uin,n

∣∣∣∣
AND

(10.265)

XOR:
∂uout

∂uin,n
= 0.5 ·u′i,n · ∏

m 6=n
−ui,m (10.266)

XNOR:
∂uout

∂uin,n
= 0.5 ·u′i,n · ∏

m 6=n
ui,m (10.267)

A problem of these macro models are the numbers of input ports. The output voltage levels worsen with
increasing number of ports. The practical limit lies around eight input ports.

With that knowledge it is now easy to create the MNA matrix. The first port is the output port of the device.
So, for a 2-input port device, it is:

. . . 1

. . . 0

. . . 0
−1 ∂uout/∂uin,1 ∂uout/∂uin,1 0

 ·


Vout
Vin,1
Vin,2
Iout

=


I0
I1
I2
0

 (10.268)

The above MNA matrix entries are also used during the non-linear DC and transient analysis with the 0 in
the right hand side vector replaced by an equivalent voltage

Veq =
∂uout

∂uin,1
·Vin,1 +

∂uout

∂uin,2
·Vin,2−uout (10.269)

with uout computed using equations (10.254) to (10.260).

With the given small-signal matrix representation, building the S-parameters is easy.

(S) =

−1 4 ·∂uout/∂uin,1 4 ·∂uout/∂uin,2
0 1 0
0 0 1

 (10.270)

These matrices can easily extended to any number of input ports.

10.7 Equation defined models
Often it will happen that a user needs to implement his own model. Therefore, it is useful to supply devices
that are defined by arbitrary equations.
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10.7.1 Models with Explicit Equations
For example the user must enter an equation i(V ) describing how the port current I depends on the port
voltage V = V1−V2 and an equation q(V ) describing how much charge Q is held due to the voltage V .
These are time domain equations. The most simple way then is a device with two nodes. Defining

I = i(V ) and g =
∂I
∂V

= lim
h→0

I(V +h)− I(V )
h

(10.271)

as well as

Q = q(V ) and c =
∂Q
∂V

= lim
h→0

Q(V +h)−Q(V )
h

(10.272)

the MNA matrix for a (non-linear) DC analysis writes:

[
+g(m) −g(m)

−g(m) +g(m)

]
·

[
V (m+1)

1

V (m+1)
2

]
=
[
−I(m) +g(m) ·V (m)

+I(m)−g(m) ·V (m)

]

=

[
−I(m) +g(m) ·(V (m)

1 −V (m)
2 )

+I(m)−g(m) ·(V (m)
1 −V (m)

2 )

] (10.273)

For a transient simulation, equation (6.89) on page 57 has to be used with Q and c.

For an AC analysis the MNA matrix writes:

(Y ) = (g+ jω ·c) ·
[
+1 −1
−1 +1

]
(10.274)

And the S-parameter matrix writes:

S11 = S22 =
1

2 ·Z0 ·Y +1
(10.275)

S12 = S21 = 1−S11 (10.276)
Y = g+ jω ·c (10.277)

The simulator needs to create the derivatives g and c by its own. This can be done numerically or symboli-
cally. One might ask why the non-linear capacitance is modeled as charge, not as capacitance. Indeed this
may be changed, but with a computer algorithm, creating the derivative is easier than to integrate.

The component described above can be expanded to one with two ports (two pairs of terminals: terminal 1
and 2 and terminal 3 and 4). That is, the currents and charges of both ports depend on both port voltages
V12 = V1−V2 and V34 = V3−V4. Thus, the defining equations are:

I1 = i1(V12,V34) and g11 =
∂I1

∂V12
and g12 =

∂I1

∂V34
(10.278)

I2 = i2(V12,V34) and g21 =
∂I2

∂V12
and g22 =

∂I2

∂V34
(10.279)

as well as

Q1 = q1(V12,V34) and c11 =
∂Q1

∂V12
and c12 =

∂Q1

∂V34
(10.280)

Q2 = q2(V12,V34) and c21 =
∂Q2

∂V12
and c22 =

∂Q2

∂V34
(10.281)

The MNA matrix for the DC analysis writes:
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+g(m)

11 −g(m)
11 +g(m)

12 −g(m)
12

−g(m)
11 +g(m)

11 −g(m)
12 +g(m)

12

+g(m)
21 −g(m)

21 +g(m)
22 −g(m)

22

−g(m)
21 +g(m)

21 −g(m)
22 +g(m)

22

 ·


V (m+1)
1

V (m+1)
2

V (m+1)
3

V (m+1)
4

=


−I(m)

1 +g(m)
11 ·V

(m)
12 +g(m)

12 ·V
(m)
34

+I(m)
1 −g(m)

11 ·V
(m)
12 −g(m)

12 ·V
(m)
34

−I(m)
2 +g(m)

21 ·V
(m)
12 +g(m)

22 ·V
(m)
34

+I(m)
2 −g(m)

21 ·V
(m)
12 −g(m)

22 ·V
(m)
34

 (10.282)

For a transient simulation, the DC equations have to be extended by the non-linear (trans-) capacitances,
e.g. for backward Euler:

In+1,m
C11 =

c11(V
n+1,m
12 )
hn︸ ︷︷ ︸

geq,11

·V n+1
12 −

c11(V n
12)

hn ·V n
12︸ ︷︷ ︸

Ieq,11

(10.283)

In+1,m
C12 =

c12(V
n+1,m
12 )
hn︸ ︷︷ ︸

geq,12

·V n+1
12 −

c12(V n
12)

hn ·V n
12︸ ︷︷ ︸

Ieq,12

(10.284)

In+1,m
C21 =

c21(V
n+1,m
34 )
hn︸ ︷︷ ︸

geq,21

·V n+1
34 −

c21(V n
34)

hn ·V n
34︸ ︷︷ ︸

Ieq,21

(10.285)

In+1,m
C22 =

c22(V
n+1,m
34 )
hn︸ ︷︷ ︸

geq,22

·V n+1
34 −

c22(V n
34)

hn ·V n
34︸ ︷︷ ︸

Ieq,22

(10.286)

So with gtr = g+geq it is:
+g(m)

tr,11 −g(m)
tr,11 +g(m)

tr,12 −g(m)
tr,12

−g(m)
tr,11 +g(m)

tr,11 −g(m)
tr,12 +g(m)

tr,12

+g(m)
tr,21 −g(m)

tr,21 +g(m)
tr,22 −g(m)

tr,22

−g(m)
tr,21 +g(m)

tr,21 −g(m)
tr,22 +g(m)

tr,22

 ·


V (n+1,m+1)
1

V (n+1,m+1)
2

V (n+1,m+1)
3

V (n+1,m+1)
4



=


−I(m)

1 +g(m)
11 ·V

(m)
12 +g(m)

12 ·V
(m)
34 − I(n)

eq,11− I(n)
eq,12

+I(m)
1 −g(m)

11 ·V
(m)
12 −g(m)

12 ·V
(m)
34 + I(n)

eq,12 + I(n)
eq,12

−I(m)
2 +g(m)

21 ·V
(m)
12 +g(m)

22 ·V
(m)
34 − I(n)

eq,21− I(n)
eq,22

+I(m)
2 −g(m)

21 ·V
(m)
12 −g(m)

22 ·V
(m)
34 + I(n)

eq,21 + I(n)
eq,22


(10.287)

For an AC analysis the MNA matrix writes:

(Y ) =


+g11 + jω ·c11 −g11− jω ·c11 +g12 + jω ·c12 −g12− jω ·c12
−g11− jω ·c11 +g11 + jω ·c11 −g12− jω ·c12 +g12 + jω ·c12
+g21 + jω ·c21 −g21− jω ·c21 +g22 + jω ·c22 −g22− jω ·c22
−g21− jω ·c21 +g21 + jω ·c21 −g22− jω ·c22 +g22 + jω ·c22

 (10.288)

As can bee seen, this scheme can be expanded to any number of ports. The matrices soon become quite
complex, but fortunately modern computers are able to cope with this complexity. S-parameters must be
obtained numerical by setting equation 10.288 into equation 15.7.

10.7.2 Models with Implicit Equations
The above-mentioned explicit models are not useable for all components. If the Y-parameters do not exist
or if the equations cannot be analytically transformed into the explicit form, then an implicit representation
must be taken. hat is, for a one-port (two-terminal) component the following formulas are defined by the
user:
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0 = f (V, I) and gV =
∂ f (V, I)

∂V
= lim

h→0

f (V +h, I)− f (V, I)
h

(10.289)

and gI =
∂ f (V, I)

∂I
= lim

h→0

f (V, I +h)− f (V, I)
h

(10.290)

The MNA matrix for the AC analysis writes as follows: . . +1
. . −1

+gV −gV gI

 ·
V1

V2
Iout

=

0
0
0

 (10.291)

As usual, for the DC analysis the last zero on the right hand side has to be replaced by the iteration formula:

gV ·(V1−V2)+gI · Iout − f (V1−V2, Iout) (10.292)

The S-parameters are:

S11 = S22 =
gI

gI−2 ·Z0 ·gV
(10.293)

S12 = S21 = 1−S11 (10.294)

Consequently, for a two-port device two equation are necessary: One for first port and one for second port:

0 = f1(V12,V34, I1, I2) (10.295)
0 = f2(V12,V34, I1, I2) (10.296)

Building the MNA matrix is again straight forward:


. . . . +1 0
. . . . −1 0
. . . . 0 +1
. . . . 0 −1

+g f 1,V 12 −g f 1,V 12 +g f 1,V 34 −g f 1,V 34 g f 1,I1 g f 1,I2
+g f 2,V 12 −g f 2,V 12 +g f 2,V 34 −g f 2,V 34 g f 2,I1 g f 2,I2

 ·


V (m+1)
1

V (m+1)
2

V (m+1)
3

V (m+1)
4

I(m+1)
out1

I(m+1)
out2


=
[

g f 1,V 12 ·V12 +g f 1,V 34 ·V34 +g f 1,I1 · Iout1 +g f 1,I2 · Iout2− f1(V12,V34, Iout1, Iout2)
g f 2,V 12 ·V12 +g f 2,V 34 ·V34 +g f 2,I1 · Iout1 +g f 2,I2 · Iout2− f2(V12,V34, Iout1, Iout2)

]
(10.297)

Once more, this concept can easily expanded to any number of ports. It is also possible mix implicit and
explicit definitions, i.e. some ports of the device may be defined by explicit equations whereas the others
are defined by implicit equations.

The calculation of the S-parameters is not that trival. The Y-parameters as well as the Z-parameters might
be infinite. A small trick can avoid this problem, as will be shown in the following 2-port example. First,
the small-signal Y-parameters should be derived by using the law about implicit functions:

(J) =
(

y11 y12
y21 y22

)
=−

∂ f1

∂I1

∂ f1

∂I2
∂ f2

∂I1

∂ f2

∂I2


︸ ︷︷ ︸

Ji

−1

·

 ∂ f1

∂V1

∂ f1

∂V2
∂ f2

∂V1

∂ f2

∂V2


︸ ︷︷ ︸

Jv

(10.298)

The equation reveals immediately the difficulty: The inverse of the current Jocobi matrix Ji may not exist.
But this problem can be outsourced to one single scalar number by using Cramer’s rule for matrix inversion:
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J−1
i =

1
∆Ji
·AJi (10.299)

The matrix AJi is built of the sub-determinantes of Ji in the way that a(n,m) is the determinante of Ji without
row m and without column n but multiplied with (−1)n+m. It therefore always exists, whereas dividing by
the determinante of Ji may become infinity. Now parameters can be defined as follows:

(J′) =
(

y′11 y′12
y′21 y′22

)
=−AJi ·Jv (10.300)

Before converting to S-parameters the matrix must be expanded to a 4-port matrix, because the 2-ports are
not referenced to ground:

(J′′) =


+y′11 −y′11 +y′12 −y′12
−y′11 +y′11 −y′12 +y′12
+y′21 −y′21 +y′22 −y′22
−y′21 +y′21 −y′22 +y′22

=−A′Ji ·J′v (10.301)

Finally, equation (15.7) converts the parameters to S-parameters:

(S) = ((E)−Z0 ·(Y )) · ((E)+Z0 ·(Y ))−1 (10.302)

=
(

(E)+Z0 ·
1

∆Ji
·A′Ji ·J′v

)
·
(

(E)−Z0 ·
1

∆Ji
·A′Ji ·J′v

)−1

(10.303)

=
(
∆Ji ·(E)+Z0 ·A′Ji ·J′v

)
·
(
∆Ji ·(E)−Z0 ·A′Ji ·J′v

)−1 (10.304)

The calculations proofs that the critical factor 1/∆Ji disappears and a solution exists if and only if the
S-parameters of this device exist.
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Chapter 11

Microstrip components

11.1 Single microstrip line

Figure 11.1: single microstrip line

The electrical parameters of microstrip lines which are required for circuit design are impedance, attenua-
tion, wavelength and propagation constant. These parameters are interrelated for all microstrips assuming
that the propagation mode is a transverse electromagnetic mode, or it can be approximated by a transverse
electromagnetic mode. The Y and S parameters can be found in section 9.20.

11.1.1 Quasi-static characteristic impedance
Wheeler

Harold A. Wheeler [16] formulated his synthesis and analysis equations based upon a conformal mapping’s
approximation of the dielectric boundary with parallel conductor strips separated by a dielectric sheet.

For wide strips (W/h > 3.3) he obtains the approximation

ZL (W,h,εr) =
ZF0

2
√

εr
· 1

W
2h

+
1
π

ln4+
εr +1
2πεr

ln
(

πe
2

(
W
2h

+0.94
))

+
εr−1
2πε2

r
· ln eπ2

16

(11.1)

146



For narrow strips (W/h≤ 3.3) he obtains the approximation

ZL (W,h,εr) =
ZF0

π
√

2(εr +1)
·

ln

4h
W

+

√(
4h
W

)2

+2

− 1
2
· εr−1

εr +1

(
ln

π

2
+

1
εr

ln
4
π

) (11.2)

The formulae are applicable to alumina-type substrates (8 ≤ εr ≤ 12) and have an estimated relative error
less than 1 per cent.

Figure 11.2: characteristic impedance as approximated by Hammerstad for εr = 1.0 (air), 3.78 (quartz) and
9.5 (alumina)

Schneider

The following formulas obtained by rational function approximation give accuracy of ±0.25% for 0 ≤
W/h≤ 10 which is the range of importance for most engineering applications. M.V. Schneider [17] found
these approximations for the complete elliptic integrals of the first kind as accurate as ±1% for W/h > 10.

ZL =
ZF0√
εre f f

·



1
2π
· ln
(

8 ·h
W

+
W
4 ·h

)
for

W
h
≤ 1

1

W
h

+2.42−0.44 · h
W

+
(

1− h
W

)6 for
W
h

> 1
(11.3)

Hammerstad and Jensen

The equations for the single microstrip line presented by E. Hammerstad and Ø. Jensen [18] are based upon
an equation for the impedance of microstrip in an homogeneous medium and an equation for the microstrip
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effective dielectric constant. The obtained accuracy gives errors at least less than those caused by physical
tolerances and is better than 0.01% for W/h≤ 1 and 0.03% for W/h≤ 1000.

ZL1 (W,h) =
ZF0

2π
· ln

 fu
h

W
+

√
1+
(

2h
W

)2
 (11.4)

ZL (W,h,εr) =
ZL1 (W,h)√

εr
=

ZF0

2π ·
√

εr
· ln

 fu
h

W
+

√
1+
(

2h
W

)2
 (11.5)

with

fu = 6+(2π−6) · exp

(
−
(

30.666 · h
W

)0.7528
)

(11.6)

The comparison of the expression given for the quasi-static impedance as shown in fig. 11.3 has been done
with respect to E. Hammerstad and Ø. Jensen. It reveals the advantage of closed-form expressions. The
impedance step for Wheelers formulae at W/h = 3.3 is approximately 0.1Ω.

Figure 11.3: characteristic impedance in comparison for εr = 9.8

11.1.2 Quasi-static effective dielectric constant
Wheeler

Harold A. Wheeler [19] gives the following approximation for narrow strips (W/h < 3) based upon the
characteristic impedance ZL. The estimated relative error is less than 1%.

εre f f =
εr +1

2
+

ZF0

2πZL
· εr−1

2
·
(

ln
π

2
+

1
εr

ln
4
π

)
(11.7)
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For narrow strips (W/h≤ 1.3):

εre f f =
1+ εr

2
·
(

A
A−B

)2

(11.8)

with

A = ln
(

8
h

W

)
+

1
32
·
(

W
h

)2

(11.9)

B =
1
2
· εr−1

εr +1
·
(

ln
π

2
+

1
εr

ln
4
π

)
(11.10)

For wide strips (W/h > 1.3):

εre f f = εr ·
(

E−D
E

)2

(11.11)

with

D =
εr−1
2πεr

·
(

ln
(

πe
2

(
W
2h

+0.94
))
− 1

εr
ln

eπ2

16

)
(11.12)

E =
1
2
·W

h
+

1
π
· ln
(

πe
W
h

+16.0547
)

(11.13)

Schneider

The approximate function found by M.V. Schneider [17] is meant to have an accuracy of±2% for εre f f and
an accuracy of ±1% for

√
εre f f .

εre f f =
εr +1

2
+

εr−1
2
· 1√

1+10
h

W

(11.14)

Hammerstad and Jensen

The accuracy of the E. Hammerstad and Ø. Jensen [18] model is better than 0.2% at least for εr < 128 and
0.01≤W/h≤ 100.

εre f f (W,h,εr) =
εr +1

2
+

εr−1
2
·
(

1+10
h

W

)−ab

(11.15)

with

a(u) = 1+
1

49
· ln

(
u4 +(u/52)2

u4 +0.432

)
+

1
18.7

· ln
(

1+
( u

18.1

)3
)

(11.16)

b(εr) = 0.564 ·
(

εr−0.9
εr +3

)0.053

(11.17)

u =
W
h

(11.18)

11.1.3 Strip thickness correction
The formulas given for the quasi-static characteristic impedance and effective dielectric constant in the
previous sections are based upon an infinite thin microstrip line thickness t = 0. A finite thickness t can
be compensated by a reduction of width. That means a strip with the width W and the finite thickness t
appears to be a wider strip.
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Wheeler

Harold A. Wheeler [19] proposes the following equation to account for the strip thickness effect based on
free space without dielectric.

∆W1 =
t
π

ln
4e√( t

h

)2
+
(

1/π

W/t +1.10

) (11.19)

For the mixed media case with dielectric he obtains the approximation

∆Wr =
1
2

∆W1

(
1+

1
εr

)
(11.20)

Schneider

M.V. Schneider [17] derived the following approximate expressions.

∆W =


t
π
·
(

1+ ln
4 ·π ·W

t

)
for

W
h
≤ 1

2π

t
π
·
(

1+ ln
2 ·h

t

)
for

W
h

>
1

2π

(11.21)

Additional restrictions for applying these expressions are t � h, t < W/2 and t/∆W < 0.75. Notice also
that the ratio ∆W/t is divergent for t→ 0.

Hammerstad and Jensen

E. Hammerstad and Ø. Jensen are using the method described by Wheeler [19] to account for a non-zero
strip thickness. However, some modifications in his equations have been made, which give better accuracy
for narrow strips and for substrates with low dielectric constant. For the homogeneous media the correction
is

∆W1 =
t

h ·π
ln

1+
4e

t
h
· coth2√6.517W

 (11.22)

and for the mixed media the correction is

∆Wr =
1
2

∆W1

(
1+ sech

√
εr−1

)
(11.23)

By defining corrected strip widths, W1 = W +∆W1 and Wr = W +∆Wr, the effect of strip thickness may be
included in the equations (11.4) and (11.15).

ZL (W,h, t,εr) =
ZL1 (Wr,h)√

εre f f (Wr,h,εr)
(11.24)

εre f f (W,h, t,εr) = εre f f (Wr,h,εr) ·
(

ZL1 (W1,h)
ZL1 (Wr,h)

)2

(11.25)

11.1.4 Dispersion
Dispersion can be a strong effect in microstrip transmission lines due to their inhomogeneity. Typically, as
frequency is increased, εre f f increases in a non-linear manner, approaching an asymptotic value. Dispersion
affects characteristic impedance in a similar way.
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Kirschning and Jansen

The dispersion formulae given by Kirschning and Jansen [20] is meant to have an accuracy better than
0.6% in the range 0.1≤W/h≤ 100, 1≤ εr ≤ 20 and 0≤ h/λ0 ≤ 0.13, i.e. up to about 60GHz for 25mm
substrates.

εr( f ) = εr−
εr− εre f f

1+P( f )
(11.26)

with

P( f ) = P1P2 · ((0.1844+P3P4) · fn)
1.5763 (11.27)

P1 = 0.27488+

(
0.6315+

0.525

(1+0.0157 · fn)
20

)
·W

h
−0.065683 · exp

(
−8.7513

W
h

)
(11.28)

P2 = 0.33622 · (1− exp(−0.03442 ·εr)) (11.29)

P3 = 0.0363 · exp
(
−4.6

W
h

)
·

(
1− exp

(
−
(

fn

38.7

)4.97
))

(11.30)

P4 = 1+2.751 ·
(

1− exp
(
−
(

εr

15.916

)8
))

(11.31)

fn = f ·h = normalised frequency in [GHz ·mm] (11.32)

Dispersion of the characteristic impedance according to [21] can be applied for the range 0≤ h/λ0 ≤ 0.1,
0.1≤W/h≤ 10 and for substrates with 1≤ εr ≤ 18 and is is given by the following set of equations.

R1 = 0.03891 ·ε1.4
r (11.33)

R2 = 0.267 ·u7.0 (11.34)

R3 = 4.766 · exp
(
−3.228 ·u0.641

)
(11.35)

R4 = 0.016+(0.0514 ·εr)
4.524 (11.36)

R5 = ( fn/28.843)12.0 (11.37)

R6 = 22.20 ·u1.92 (11.38)

and

R7 = 1.206−0.3144 · exp(−R1) · (1− exp(−R2)) (11.39)

R8 = 1+1.275 ·
(

1− exp
(
−0.004625 ·R3 ·ε1.674

r

)
· ( fn/18.365)2.745

)
(11.40)

R9 = 5.086 · R4 ·R5

0.3838+0.386 ·R4
· exp(−R6)

1+1.2992 ·R5
· (εr−1)6

1+10 · (εr−1)6 (11.41)
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and

R10 = 0.00044 ·ε2.136
r +0.0184 (11.42)

R11 =
( fn/19.47)6

1+0.0962 · ( fn/19.47)6 (11.43)

R12 =
1

1+0.00245 ·u2 (11.44)

R13 = 0.9408 ·εr( f )R8 −0.9603 (11.45)

R14 = (0.9408−R9) ·εR8
re f f
−0.9603 (11.46)

R15 = 0.707 ·R10 · ( fn/12.3)1.097 (11.47)

R16 = 1+0.0503 ·ε2
r ·R11 ·

(
1− exp

(
−(u/15)6

))
(11.48)

R17 = R7 ·
(

1−1.1241 · R12

R16
· exp

(
−0.026 · f 1.15656

n −R15

))
(11.49)

Finally the frequency-dependent characteristic impedance can be written as

ZL( fn) = ZL(0) ·
(

R13

R14

)R17

(11.50)

The abbreviations used in these expressions are fn for the normalized frequency as denoted in eq. (11.32)
and u = W/h for the microstrip width normalised with respect to the substrate height. The terms ZL(0) and
εre f f denote the static values of microstrip characteristic impedance and effective dielectric constant. The
value εr( f ) is the frequency dependent effective dielectric constant computed according to [20].

R.H. Jansen and M. Kirschning remark in [21] for the implementation of the expressions on a computer,
R1, R2 and R6 should be restricted to numerical values less or equal 20 in order to prevent overflow.

Yamashita

The values obtained by the approximate dispersion formula as given by E. Yamashita [22] deviate within
1% in a wide frequency range compared to the integral equation method used to derive the functional
approximation. The formula assumes the knowledge of the quasi-static effective dielectric constant. The
applicable ranges of the formula are 2 < εr < 16, 0.06 <W/h < 16 and 0.1GHz < f < 100GHz. Though the
lowest usable frequency is limited by 0.1GHz, the propagation constant for frequencies less than 0.1GHz
has been given as the quasi-static one.

εr( f ) = εre f f ·

1+
1
4
·k ·F1.5

1+
1
4
·F1.5


2

(11.51)

with

k =

√
εr

εre f f

(11.52)

F =
4 ·h · f ·

√
εr−1

c0
·

(
0.5+

(
1+2 · log

(
1+

W
h

))2
)

(11.53)

Kobayashi

The dispersion formula presented by M. Kobayashi [23], derived by comparison to a numerical model, has
a high degree of accuracy, better than 0.6% in the range 0.1 ≤W/h ≤ 10, 1 < εr ≤ 128 and any h/λ0 (no
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frequency limits).

εr( f ) = εr−
εr− εre f f

1+
(

f
f50

)m (11.54)

with

f50 =
c0

2π ·h ·
(

0.75+
(

0.75− 0.332
ε1.73

r

)
W
h

) · arctan

(
εr ·
√

εre f f −1
εr− εre f f

)
√

εr− εre f f

(11.55)

m = m0 ·mc (≤ 2.32) (11.56)

m0 = 1+
1

1+
√

W
h

+0.32 ·

 1

1+
√

W
h


3

(11.57)

mc =


1+

1.4

1+
W
h

·
(

0.15−0.235 · exp
(
−0.45

f
f50

))
for W/h≤ 0.7

1 for W/h≥ 0.7

(11.58)

Getsinger

Based upon measurements of dispersion curves for microstrip lines on alumina substrates 0.025 and 0.050
inch thick W. J. Getsinger [24] developed a very simple , closed-form expression that allow slide-rule
prediction of microstrip dispersion.

εr( f ) = εr−
εr− εre f f

1+G ·
(

f
fp

)2 (11.59)

with

fp =
ZL

2µ0h
(11.60)

G = 0.6+0.009 ·ZL (11.61)

Also based upon measurements of microstrip lines 0.1, 0.25 and 0.5 inch in width on a 0.250 inch thick alu-
mina substrate Getsinger [25] developed two different dispersion models for the characteristic impedance.

• wave impedance model published in [25]

ZL( f ) = ZL ·

√
εre f f

εr( f )
(11.62)

• group-delay model published in [26]

ZL( f ) = ZL ·

√
εr( f )
εre f f

· 1
1+D( f )

(11.63)

with

D( f ) =
(εr− εr( f )) ·

(
εr( f )− εre f f

)
εr( f ) ·

(
εr− εre f f

) (11.64)

153



Hammerstad and Jensen

The dispersion formulae of E. Hammerstad and Ø. Jensen [18] give good results for all types of substrates
(not as limited as Getsinger’s formulae). The impedance dispersion model is based upon a parallel-plate
model using the theory of dielectrics.

εr( f ) = εr−
εr− εre f f

1+G ·
(

f
fp

)2 (11.65)

with

fp =
ZL

2µ0h
(11.66)

G =
π2

12
· εr−1

εre f f

·
√

2π ·ZL

ZF0
(11.67)

ZL( f ) = ZL ·

√
εre f f

εr( f )
· εr( f )−1

εre f f −1
(11.68)

Edwards and Owens

The authors T. C. Edwards and R. P. Owens [27] developed a dispersion formula based upon measurements
of microstrip lines on sapphire in the range 10Ω ≤ ZL ≤ 100Ω and up to 18GHz. The procedure was
repeated for several microstrip width-to-substrate-height ratios (W/h) between 0.1 and 10.

εr( f ) = εr−
εr− εre f f

1+P
(11.69)

with

P =
(

h
ZL

)1.33

·
(
0.43 f 2−0.009 f 3) (11.70)

where h is in millimeters and f is in gigahertz. Their new dispersion equation involving the polynomial,
which was developed to predict the fine detail of the experimental εr( f ) versus frequency curves, includes
two empicical parameters. However, it seems the formula is not too sensitive to changes in substrate
parameters.

Pramanick and Bhartia

P. Bhartia and P. Pramanick [28] developed dispersion equations without any empirical quantity. Their work
expresses dispersion of the dielectric constant and characteristic impedance in terms of a single inflection
frequency.

For the frequency-dependent relative dielectric constant they propose

εr( f ) = εr−
εr− εre f f

1+
(

f
fT

)2 (11.71)

where

fT =

√
εr

εre f f

· ZL

2µ0h
(11.72)

Dispersion of the characteristic impedance is accounted by

ZL( f ) =
ZF0 ·h

We( f ) ·
√

εr( f )
(11.73)
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whence
We( f ) = W +

We f f −W

1+
(

f
fT

)2 and We f f =
ZF0 ·h

ZL ·
√

εre f f

(11.74)

Schneider

Martin V. Schneider [29] proposed the following equation for the dispersion of the effective dielectric
constant of a single microstrip line. The estimated error is less than 3%.

εr( f ) = εre f f ·
(

1+ f 2
n

1+ k · f 2
n

)2

(11.75)

with

fn =
4h · f ·

√
εr−1

c0
and k =

√
εre f f

εr
(11.76)

For the dispersion of the characteristic impedance he uses the same wave guide impedance model as
Getsinger in his first approach to the problem.

ZL( f ) = ZL ·

√
εre f f

εr( f )
(11.77)

11.1.5 Transmission losses
The attenuation of a microstrip line consists of conductor (ohmic) losses, dielectric (substrate) losses, losses
due to radiation and propagation of surface waves and higher order modes.

α = αc +αd +αr +αs (11.78)

Dielectric losses

Dielectric loss is due to the effects of finite loss tangent tanδd . Basically the losses rise proportional
over the operating frequency. For common microwave substrate materials like Al2O3 ceramics with a loss
tangent δd less than 10−3 the dielectric losses can be neglected compared to the conductor losses.

For the inhomogeneous line, an effective dielectric filling fraction give that proportion of the transmission
line’s cross section not filled by air. For microstrip lines, the result is

αd =
εr√
εre f f

·
εre f f −1
εr−1

· π

λ0
· tanδd (11.79)

whereas

δd dielectric loss tangent

Conductor losses

E. Hammerstad and Ø. Jensen [18] proposed the following equation for the conductor losses. The surface
roughness of the substrate is necessary to account for an asymptotic increase seen in the apparent surface
resistance with decreasing skin depth. This effect is considered by the correction factor Kr. The current
distribution factor Ki is a very good approximation provided that the strip thickness exceeds three skin
depths (t > 3δ).

αc =
R�

ZL ·W
·Kr ·Ki (11.80)
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with

R� =
ρ

δ
=
√

ρ · ω ·µ
2

=
√

ρ ·π · f ·µ (11.81)

Ki = exp

(
−1.2

(
ZL

ZF0

)0.7
)

(11.82)

Kr = 1+
2
π

arctan

(
1.4
(

∆

δ

)2
)

(11.83)

whereas

R� sheet resistance of conductor material (skin resistance)
ρ specific resistance of conductor
δ skin depth

Ki current distribution factor
Kr correction term due to surface roughness
∆ effective (rms) surface roughness of substrate

ZF0 wave impedance in vacuum

11.2 Microstrip corner
The equivalent circuit of a microstrip corner is shown in fig. 11.4. The values of the components are as
follows [30].

C [pF] = W ·
(

(10.35 ·εr +2.5) ·W
h

+(2.6 ·εr +5.64)
)

(11.84)

L [nH] = 220 ·h ·

(
1−1.35 · exp

(
−0.18 ·

(
W
h

)1.39
))

(11.85)

The values for a 50% mitered bend are [30].

C [pF] = W ·
(

(3.93 ·εr +0.62) ·W
h

+(7.6 ·εr +3.80)
)

(11.86)

L [nH] = 440 ·h ·

(
1−1.062 · exp

(
−0.177 ·

(
W
h

)0.947
))

(11.87)

With W being width of the microstrip line and h height of the substrate. These formulas are valid for
W/h = 0.2 to 6.0 and for εr = 2.36 to 10.4 and up to 14 GHz. The precision is approximately 0.3%.

Figure 11.4: microstrip corner (left), mitered corner (middle) and equivalent circuit (right)
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The Z-parameters for the given equivalent small signal circuit can be written as stated in eq. (11.88) and
are easy to convert to scattering parameters.

Z =

 jωL+
1

jωC
1

jωC
1

jωC
jωL+

1
jωC

 (11.88)

11.3 Parallel coupled microstrip lines

Figure 11.5: parallel coupled microstrip lines

11.3.1 Characteristic impedance and effective dielectric constant
Parallel coupled microstrip lines are defined by the characteristic impedance and the effective permittivity
of the even and the odd mode. The y- and S-parameters are depicted in section 9.22.

Kirschning and Jansen

These quantities can very precisely be modeled by the following equations [31], [32].

Beforehand some normalised quantities (with microstrip line width W , spacing s between the lines and
substrate height h) are introduced:

u =
W
h

, g =
s
h

, fn =
f

GHz
· h

mm
=

f
MHz

·h (11.89)

The applicability of the described model is

0.1≤ u≤ 10 , 0.1≤ g≤ 10 , 1≤ εr ≤ 18 (11.90)

The accuracies of the formulas holds for these ranges.

Static effective permittivity of even mode:

εe f f ,e(0) = 0.5 ·(εr +1)+0.5 ·(εr−1) ·
(

1+
10
v

)−ae(v)·be(εr)

(11.91)
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with

v = u · 20+g2

10+g2 +g · exp(−g) (11.92)

ae (v) = 1+
1
49
· ln

(
v4 +(v/52)2

v4 +0.432

)
+

1
18.7

· ln
(

1+
( v

18.1

)3
)

(11.93)

be (εr) = 0.564 ·
(

εr−0.9
εr +3

)0.053

(11.94)

Static effective permittivity of odd mode:

εe f f ,o(0) = (0.5 · (εr +1)+ao (u,εr)− εe f f (0)) · exp
(
−co ·gdo

)
+ εe f f (0) (11.95)

with

ao (u,εr) = 0.7287 · (εe f f (0)−0.5 · (εr +1)) · (1− exp(−0.179 ·u)) (11.96)

bo (εr) = 0.747 · εr

0.15+ εr
(11.97)

co = bo(εr)− (bo (εr)−0.207) · exp(−0.414 ·u) (11.98)
do = 0.593+0.694 · exp(−0.562 ·u) (11.99)

whence εe f f (0) refers to the zero-thickness single microstrip line of width W according to [18] (see also
eq. (11.15)).

The dispersion formulae for the odd and even mode write as follows.

εe f f ,e,o ( fn) = εr−
εr− εe f f ,e,o(0)

1+Fe,o ( fn)
(11.100)

The frequency dependence for the even mode is

Fe ( fn) = P1 ·P2 · ((P3 ·P4 +0.1844 ·P7) · fn)
1.5763 (11.101)

with

P1 = 0.27488+
(

0.6315+
0.525

(1+0.0157 · fn)20

)
·u−0.065683 · exp(−8.7513 ·u) (11.102)

P2 = 0.33622 · (1− exp(−0.03442 ·εr)) (11.103)

P3 = 0.0363 · exp(−4.6 ·u) ·
(

1− exp
(
−( fn/38.7)4.97

))
(11.104)

P4 = 1+2.751 ·
(

1− exp
(
−(εr/15.916)8

))
(11.105)

P5 = 0.334 · exp
(
−3.3 · (εr/15)3

)
+0.746 (11.106)

P6 = P5 · exp
(
−( fn/18)0.368

)
(11.107)

P7 = 1+4.069 ·P6 ·g0.479 · exp
(
−1.347 ·g0.595−0.17 ·g2.5

)
(11.108)

The frequency dependence for the odd mode is

Fo ( fn) = P1 ·P2 · ((P3 ·P4 +0.1844) · fn ·P15)
1.5763 (11.109)
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with

P8 = 0.7168 ·
(

1+
1.076

1+0.0576 · (εr−1)

)
(11.110)

P9 = P8−0.7913 ·
(

1− exp
(
−( fn/20)1.424

))
· arctan

(
2.481 · (εr/8)0.946

)
(11.111)

P10 = 0.242 · (εr−1)0.55 (11.112)

P11 = 0.6366 · (exp(−0.3401 · fn)−1) · arctan
(

1.263 · (u/3)1.629
)

(11.113)

P12 = P9 +
1−P9

1+1.183 ·u1.376 (11.114)

P13 = 1.695 · P10

0.414+1.605 ·P10
(11.115)

P14 = 0.8928+0.1072 ·
(

1− exp
(
−0.42 · ( fn/20)3.215

))
(11.116)

P15 =
∣∣1−0.8928 · (1+P11) · exp

(
−P13 ·g1.092) ·P12/P14

∣∣ (11.117)

Up to fn = 25 the maximum error of these equations is 1.4%.

The static characteristic impedance for the even mode writes as follows.

ZL,e(0) =

√
εe f f (0)

εe f f ,e(0)
· ZL(0)

1− ZL(0)
377Ω

·
√

εe f f (0) ·Q4

(11.118)

with

Q1 = 0.8695 ·u0.194 (11.119)

Q2 = 1+0.7519 ·g+0.189 ·g2.31 (11.120)

Q3 = 0.1975+
(

16.6+(8.4/g)6
)−0.387

+
1

241
· ln

(
g10

1+(g/3.4)10

)
(11.121)

Q4 =
Q1

Q2
· 2

exp(−g) ·uQ3 +(2− exp(−g)) ·u−Q3
(11.122)

with ZL(0) and εe f f (0) being again quantities for a zero-thickness single microstrip line of width W ac-
cording to [18] (see also eq. (11.15) and (11.5)).

The static characteristic impedance for the odd mode writes as follows.

ZL,o(0) =

√
εe f f (0)

εe f f ,o(0)
· ZL(0)

1− ZL(0)
377Ω

·
√

εe f f (0) ·Q10

(11.123)
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with

Q5 = 1.794+1.14 · ln
(

1+
0.638

g+0.517 ·g2.43

)
(11.124)

Q6 = 0.2305+
1

281.3
· ln

(
g10

1+(g/5.8)10

)
+

1
5.1
· ln
(

1+0.598 ·g1.154
)

(11.125)

Q7 =
10+190 ·g2

1+82.3 ·g3 (11.126)

Q8 = exp
(
−6.5−0.95 · ln(g)− (g/0.15)5

)
(11.127)

Q9 = ln(Q7) · (Q8 +1/16.5) (11.128)

Q10 =
Q2 ·Q4−Q5 · exp

(
ln(u) ·Q6 ·u−Q9

)
Q2

= Q4−
Q5

Q2
·uQ6 ·u−Q9 (11.129)

The accuracy of the static impedances is better than 0.6%.

Dispersion of the characteristic impedance for the even mode can be modeled by the following equations.

ZL,e( fn) = ZL,e(0) ·

(
0.9408 ·(εe f f ( fn))Ce −0.9603

(0.9408−de) · (εe f f (0))Ce −0.9603

)Q0

(11.130)

with

Ce = 1+1.275 ·
(

1− exp
(
−0.004625 · pe ·ε1.674

r · ( fn/18.365)2.745
))

−Q12 +Q16−Q17 +Q18 +Q20

(11.131)

de = 5.086 ·qe ·
re

0.3838+0.386 ·qe
·

exp
(
−22.2 ·u1.92

)
1+1.2992 ·re

· (εr−1)6

1+10 ·(εr−1)6 (11.132)

pe = 4.766 · exp
(
−3.228 ·u0.641

)
(11.133)

qe = 0.016+(0.0514 ·εr ·Q21)
4.524 (11.134)

re = ( fn/28.843)12 (11.135)
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and

Q11 = 0.893 ·
(

1− 0.3
1+0.7 · (εr−1)

)
(11.136)

Q12 = 2.121 · ( fn/20)4.91

1+Q11 · ( fn/20)4.91 · exp(−2.87 ·g) ·g0.902 (11.137)

Q13 = 1+0.038 · (εr/8)5.1 (11.138)

Q14 = 1+1.203 · (εr/15)4

1+ · (εr/15)4 (11.139)

Q15 =
1.887 · exp

(
−1.5 ·g0.84

)
·gQ14

1+0.41 · ( fn/15)3 · u2/Q13

0.125+u1.626/Q13

(11.140)

Q16 = Q15 ·

(
1+

9

1+0.403 · (εr−1)2

)
(11.141)

Q17 = 0.394 ·
(

1− exp
(
−1.47 · (u/7)0.672

))
·
(

1− exp
(
−4.25( fn/20)1.87

))
(11.142)

Q18 = 0.61 ·
1− exp

(
−2.13 · (u/8)1.593

)
1+6.544 ·g4.17 (11.143)

Q19 =
0.21 ·g4

(1+0.18 ·g4.9) · (1+0.1 ·u2) ·
(

1+( fn/24)3
) (11.144)

Q20 = Q19 ·

(
0.09+

1

1+0.1 · (εr−1)2.7

)
(11.145)

Q21 =
∣∣∣∣1−42.54 ·g0.133 · exp(−0.812 ·g) · u2.5

1+0.033 ·u2.5

∣∣∣∣ (11.146)

With εe f f ( fn) being the single microstrip effective dielectric constant according to [20] (see eq. (11.26))
and Q0 single microstrip impedance dispersion according to [21] (there denoted as R17, see eq. (11.49)).

Dispersion of the characteristic impedance for the odd mode can be modeled by the following equations.

ZL,o( fn) = ZL( fn)+
ZL,o(0) ·

(
εe f f ,o( fn)
εe f f ,o(0)

)Q22

−ZL( fn) ·Q23

1+Q24 +(0.46 ·g)2.2 ·Q25
(11.147)
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with

Q22 = 0.925 · ( fn/Q26)
1.536

1+0.3 · ( fn/30)1.536 (11.148)

Q23 = 1+
0.005 · fn ·Q27(

1+0.812 · ( fn/15)1.9
)
· (1+0.025 ·u2)

(11.149)

Q24 =
2.506 ·Q28 ·u0.894

3.575+u0.894 ·
(

(1+1.3 ·u) · fn

99.25

)4.29

(11.150)

Q25 =
0.3 · f 2

n

10+ f 2
n
·

(
1+

2.333 · (εr−1)2

5+(εr−1)2

)
(11.151)

Q26 = 30−
22.2 ·

(
εr−1

13

)12

1+3 ·
(

εr−1
13

)12 −Q29 (11.152)

Q27 = 0.4 ·g0.84 ·

(
1+

2.5 · (εr−1)1.5

5+(εr−1)1.5

)
(11.153)

Q28 = 0.149 · (εr−1)3

94.5+0.038 · (εr−1)3 (11.154)

Q29 =
15.16

1+0.196 · (εr−1)2 (11.155)

with ZL( fn) being the frequency-dependent power-current characteristic impedance formulation of a single
microstrip with width W according to [21] (see eq. (11.50)). Up to fn = 20, the numerical error of ZL,o( fn)
and ZL,e( fn) is less than 2.5%.

Hammerstad and Jensen

The equations given by E. Hammerstad and Ø. Jensen [18] represent the first generally valid model of
coupled microstrips with an acceptable accuracy. The model equations have been validated in the range
0.1≤ u≤ 10 and g≥ 0.01, a range which should cover that used in practice.

The homogeneous mode impedances are

ZL,e,o (u,g) =
ZL(u)

1−ZL(u) ·Φe,o (u,g)/ZF0
(11.156)

The effective dielectric constants are

εe f f ,e,o (u,g,εr) =
εr +1

2
+

εr−1
2
·Fe,o (u,g,εr) (11.157)

with

Fe (u,g,εr) =
(

1+
10

µ(u,g)

)−a(µ)·b(εr)

(11.158)

Fo (u,g,εr) = fo (u,g,εr) ·
(

1+
10
u

)−a(u)·b(εr)

(11.159)

whence a(u) and b(εr) denote eqs. (11.16) and (11.17) of the single microstrip line. The characteristic
impedance of the single microstrip line ZL (u) also defined in [18] is given by eq. (11.5). The modifying
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equations for the even mode are as follows

Φe (u,g) =
ϕ(u)

Ψ(g) ·
(
α(g) ·um(g) +(1−α(g)) ·u−m(g)

) (11.160)

ϕ(u) = 0.8645 ·u0.172 (11.161)

Ψ(g) = 1+
g

1.45
+

g2.09

3.95
(11.162)

α(g) = 0.5 ·e−g (11.163)

m(g) = 0.2175+
(

4.113+(20.36/g)6
)−0.251

+
1

323
· ln

(
g10

1+(g/13.8)10

)
(11.164)

The modifying equations for the odd mode are as follows

Φo (u,g) = Φe (u,g)− θ(g)
Ψ(g)

· exp
(

β(g) ·u−n(g) · lnu
)

(11.165)

θ(g) = 1.729+1.175 · ln
(

1+
0.627

g+0.327 ·g2.17

)
(11.166)

β(g) = 0.2306+
1

301.8
· ln

(
g10

1+(g/3.73)10

)
+

1
5.3
· ln
(

1+0.646 ·g1.175
)

(11.167)

n(g) =
(

1
17.7

+ exp
(
−6.424−0.76 · lng− (g/0.23)5

))
· ln
(

10+68.3 ·g2

1+32.5 ·g3.093

)
(11.168)

Furthermore

µ(u,g) = g ·e−g +u · 20+g2

10+g2 (11.169)

fo (u,g,εr) = fo1 (g,εr) · exp(p(g) · lnu+q(g) · sin(π · logu)) (11.170)

p(g) =
exp
(
−0.745 ·g0.295

)
cosh(g0.68)

(11.171)

q(g) = exp(−1.366−g) (11.172)

fo1 (g,εr) = 1− exp

−0.179 ·g0.15− 0.328 ·gr(g,εr)

ln
(

e+(g/7)2.8
)
 (11.173)

r (g,εr) = 1+0.15 ·

1−
exp
(

1− (εr−1)2 /8.2
)

1+g−6

 (11.174)

The quasi-static characteristic impedance ZL(u) of a zero-thickness single microstrip line denoted in eq.
(11.156) can either be calculated using the below equations with εre f f being the quasi-static effective di-
electric constant defined by eq. (11.15) or using eqs. (11.5) and (11.15).

ZL1(u) =
ZF0

u+1.98 ·u0.172 (11.175)

ZL(u) =
ZL1(u)√

εre f f

(11.176)

The errors in the even and odd mode impedances ZL,e and ZL,e were found to be less than 0.8% and less
than 0.3% for the wavelengths.

The model does not include the effect of non-zero strip thickness or asymmetry. Dispersion is also not
included. W. J. Getsinger [33] has proposed modifications to his single strip dispersion model, but unfor-
tunately it is easily shown that the results are asymptotically wrong for extreme values of gap width.
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In fact he correctly assumes that in the even mode the two strips are at the same potential, and the total
current is twice that on a single strip, and dispersion for even-mode propagation is computed by substituting
ZL,e/2 for ZL in eqs. (11.60) and (11.61). In the odd mode the two strips are at opposite potentials, and the
voltage between strips is twice that of a single strip to ground. Thus the total mode impedance is twice that
of a single strip, and the dispersion for odd-mode propagation is computed substituting 2ZL,o for ZL in eqs.
(11.60) and (11.61).

εr,e,o ( f ) = εr−
εr− εre f f ,e,o

1+G ·
(

f
fp

)2 (11.177)

with

fp =


ZL,e

4µ0h
even mode

ZL,o

µ0h
odd mode

(11.178)

G =


0.6+ZL,e ·0.0045 even mode

0.6+ZL,o ·0.018 odd mode
(11.179)

11.3.2 Strip thickness correction
According to R.H. Jansen [34] corrected strip width values have been found in the range of technologically
meaningful geometries to be

Wt,e = W +∆W ·
(

1−0.5 · exp
(
−0.69 · ∆W

∆t

))
(11.180)

Wt,o = Wt,e +∆t (11.181)

with
∆t =

2 · t ·h
s ·εr

for s� 2t (11.182)

The author refers to the modifications of the strip width of a single microstrip line ∆W given by Hammerstad
and Bekkadal. See also eq. (11.21) on page 150.

∆W =


t
π
·
(

1+ ln
(

2h
t

))
for W >

h
2π

> 2t

t
π
·
(

1+ ln
(

4πW
t

))
for

h
2π
≥W > 2t

(11.183)

For large spacings s the single line formulae (11.183) applies.

11.3.3 Transmission losses
The loss equations given by E. Hammerstad and Ø. Jensen [18] for the single microstrip line are also valid
for coupled microstrips, provided that the dielectric filling factor, homogeneous impedance, and current
distribution factor of the actual mode are used. The following approximation gives good results for odd
and even current distribution factors (modification of eq. (11.82)).

Ki,e = Ki,o = exp

(
−1.2 ·

(
ZL,e +ZL,o

2 ·ZF0

)0.7
)

(11.184)
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11.4 Microstrip open
A microstrip open end can be modeled by a longer effective microstrip line length ∆l as described by M.
Kirschning, R.H. Jansen and N.H.L. Koster [35].

∆l
h

=
Q1 ·Q3 ·Q5

Q4
(11.185)

with

Q1 = 0.434907 ·
ε0.81

r,e f f +0.26

ε0.81
r,e f f −0.189

· (W/h)0.8544 +0.236

(W/h)0.8544 +0.87
(11.186)

Q2 = 1+
(W/h)0.371

2.358 ·εr +1
(11.187)

Q3 = 1+
0.5274
ε

0.9236
r,e f f

· arctan
(

0.084 · (W/h)
1.9413

Q2

)
(11.188)

Q4 = 1+0.0377 · (6−5 · exp(0.036 · (1− εr))) · arctan
(

0.067 · (W/h)1.456
)

(11.189)

Q5 = 1−0.218 · exp(−7.5 ·W/h) (11.190)

The numerical error is less than 2.5% for 0.01≤W/h≤ 100 and 1≤ εr ≤ 50.

Another microstrip open end model was published by E. Hammerstad [36]:

∆l
h

= 0.102 ·W/h+0.106
W/h+0.264

·
(

1.166+
εr +1

εr
· (0.9+ ln(W/h+2.475))

)
(11.191)

Here the numerical error is less than 1.7% for W/h < 20.

In order to simplify calculations, the equivalent additional line length ∆l can be transformed into an equiv-
alent open end capacitance Cend :

Cend = C′ ·∆l =
√

εr,e f f

c0 ·ZL
∆l (11.192)

With C′ being the capacitance per length and c0 = 299 792 458 m/s being the vacuum light velocity.

11.5 Microstrip gap
A symmetrical microstrip gap can be modeled by two open ends with a capacitive series coupling between
the two ends. The physical layout is shown in fig. 11.6.
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Figure 11.6: symmetrical microstrip gap layout

The equivalent π-network of a microstrip gap is shown in figure 11.7. The values of the components are
according to [37] and [30].

CS [pF] = 500 ·h · exp
(
−1.86 · s

h

)
·Q1 ·

(
1+4.19

(
1− exp

(
−0.785 ·

√
h

W1
·W2

W1

)))
(11.193)

CP1 = C1 ·
Q2 +Q3

Q2 +1
(11.194)

CP2 = C2 ·
Q2 +Q4

Q2 +1
(11.195)

with

Q1 = 0.04598 ·

(
0.03+

(
W1

h

)Q5
)
·(0.272+0.07 ·εr) (11.196)

Q2 = 0.107 ·
(

W1

h
+9
)
·
( s

h

)3.23
+2.09 ·

( s
h

)1.05
· 1.5+0.3 ·W1/h

1+0.6 ·W1/h
(11.197)

Q3 = exp

(
−0.5978 ·

(
W2

W1

)1.35
)
−0.55 (11.198)

Q4 = exp

(
−0.5978 ·

(
W1

W2

)1.35
)
−0.55 (11.199)

Q5 =
1.23

1+0.12 · (W2/W1−1)0.9 (11.200)

with C1 and C2 being the open end capacitances of a microstrip line (see eq. (11.192)). The numerical error
of the capacitive admittances is less than 0.1mS for

0.1≤W1/h≤ 3
0.1≤W2/h≤ 3
1≤W2/W1 ≤ 3

6≤ εr ≤ 13
0.2≤ s/h≤ ∞

0.2GHz≤ f ≤ 18GHz
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Figure 11.7: microstrip gap and its equivalent circuit

The Y-parameters for the given equivalent small signal circuit can be written as stated in eq. (11.201) and
are easy to convert to scattering parameters.

Y =
[

jω · (CP1 +CS) − jωCS
− jωCS jω · (CP2 +CS)

]
(11.201)

11.6 Microstrip impedance step
The equivalent circuit of a microstrip impedance step is the same as for the microstrip corner (figure 11.4).
The values are according to [38]:

CS [pF] =
√

W1 ·W2 ·
(

(10.1 · logεr +2.33) ·W1

W2
−12.6 · logεr−3.17

)
(11.202)

for εr ≤ 10 and 1.5≤W1/W2 ≤ 3.5 the error is < 10%.

L1 =
LW1

LW1 +LW2
·LS (11.203)

L2 =
LW2

LW1 +LW2
·LS (11.204)

with

LW1,2 =
ZL,1,2 ·

√
εr,e f f ,1,2

c0
(11.205)

LS

h
[nH/m] = 40.5 ·

(
W1

W2
−1
)
−75 · log

W1

W2
+0.2 ·

(
W1

W2
−1
)2

(11.206)

With c0 = 299 792 458 m/s being the vacuum light velocity. The error is less than 5% for W1/W2 ≤ 5 and
W2/h = 1.

11.7 Microstrip tee junction
A model of a microstrip tee junction is published in [36]. Figure 11.8 shows a unsymmetrical microstrip
tee with the main arms consisting of port a and b and with the side arm consisting of port 2. The following
model describes the gray area. The equivalent circuit is depicted in figure 11.9. It consists of a shunt
reactance BT , one transformer in each main arm (ratios Ta and Tb) and a microstrip line in each arm (width
Wa, Wb and W2).
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Figure 11.8: unsymmetrical microstrip tee (see text)

Figure 11.9: equivalent circuit of unsymmetrical microstrip tee

First, let us define some quantities. Each of them is used in the equations below with an index of the arm
they belong to (a, b or 2).

equivalent parallel plate line width: D =
ZF0√
εr,e f f

· h
ZL

(11.207)

where ZF0 is vacuum field impedance, h height of substrate, εr,e f f effective, relative dielectric constant, ZL
microstrip line impedance.

first higher order mode cut-off frequency: fp = 4 ·105 · ZL

h
(11.208)

effective wave length of the microstrip quasi-TEM mode: λ =
c0√

εr,e f f · f
(11.209)

The main arm displacements of the reference planes from the center lines are (index x stand for a or b):

dx = 0.055 ·D2 ·
ZL,x

ZL,2
·

(
1−2 ·

ZL,x

ZL,2
·
(

f
fp,x

)2
)

(11.210)

The length of the line in the main arms is:

Lx = 0.5 ·W2−dx (11.211)
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where f is frequency.

The side arm displacement of the reference planes from the center lines is:

d2 =
√

Da ·Db · (0.5−R · (0.05+0.7 · exp(−1.6 ·R)+0.25 ·R ·Q−0.17 · lnR)) (11.212)

The length of the line in the side arm is:

L2 = 0.5 ·max(Wa,Wb)−d2 (11.213)

where max(x,y) is the larger of the both quantities, R and Q are:

R =

√
ZL,a ·ZL,b

ZL,2
Q =

f 2

fp,a · fp,b
(11.214)

Turn ratio of transformers in the side arms:

T 2
x = 1−π ·

(
f

fp,x

)2

·

(
1

12
·
(

ZL,x

ZL,2

)2

+
(

0.5− d2

Dx

)2
)

(11.215)

Shunt susceptance:

BT = 5.5 ·
√

Da ·Db

λa ·λb
· εr +2

εr
· 1

ZL,2 ·Ta ·Tb
·
√

da ·db

D2

·

(
1+0.9 · lnR+4.5 ·R ·Q−4.4 · exp(−1.3 ·R)−20 ·

(
ZL,2

ZF0

)2
) (11.216)

For better implementation of the microstrip tee (figure 11.9) the device parameter of the internal equivalent
circuit (two transformers and the shunt susceptance) are given below. The port numbering for them is port
a = 1, port b = 2 and port 2 = 3.

(Y ) = infinity (11.217)

(Z) =
1

j ·BT
·


1
n2

a

1
na ·nb

1
na

1
na ·nb

1
n2

b

1
nb

1
na

1
nb

1

 (11.218)

S11 =
1−n2

a ·( j ·BT ·Z0 + 1
n2

b
+1)

1+n2
a ·( j ·BT ·Z0 + 1

n2
b
+1)

(11.219)

S22 =
1−n2

b ·( j ·BT ·Z0 + 1
n2

a
+1)

1+n2
b ·( j ·BT ·Z0 + 1

n2
a
+1)

(11.220)

S33 =
1−
(

1
n2

a
+ 1

n2
b
+ j ·BT ·Z0

)
1+
(

1
n2

a
+ 1

n2
b
+ j ·BT ·Z0

) (11.221)

S13 = S31 =
2 ·na

n2
a ·
(

1
n2

b
+ j ·BT ·Z0 +1

)
+1

(11.222)

S23 = S32 =
2 ·nb

n2
b ·
(

1
n2

a
+ j ·BT ·Z0 +1

)
+1

(11.223)
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S12 = S21 =
2

na ·nb · ( j ·BT ·Z0 +1)+ na
nb

+ nb
na

(11.224)

The MNA matrix representation can be derived from the Z parameters in the following way.
. . . 1 0 0
. . . 0 1 0
. . . 0 0 1
−1 0 0 Z11 Z12 Z13
0 −1 0 Z21 Z22 Z23
0 0 −1 Z31 Z32 Z33

 ·


V1
V2
V3
I1,in
I2,in
I3,in

=


I1
I2
I3
0
0
0

 (11.225)

Please note that the main arm displacements in eq. (11.210) yield two small microstrip lines at each main
arm and the side arm displacement of eq. (11.212) results in a small microstrip strip line as well, but with
negative length, i.e. kind of phaseshifter here.

The transformer ratios defined in eq. (11.215) are going to be negative with increasing frequency which
produces complex values in the Z-parameter matrix as well as in the S-parameter matrix. That is why the
ratios are delimited to a minimum value.

11.8 Microstrip cross
The most useful model of a microstrip cross have been published in [39, 40]. Fig. 11.10 shows the
equivalent circuit (right-hand side) and the scheme with dimensions (left-hand side). The hatched area
in the scheme marks the area modeled by the equivalent circuit. As can be seen the model require the
microstrip width of line 1 and 3, as well as the one of line 2 and 4 to equal each other. Furthermore the
permittivity of the substrat must be εr = 9.9. The component values are calculated as follows:

X = log10

(
W1

h

)
·

(
86.6 ·W2

h
−30.9 ·

√
W2

h
+367

)
+
(

W2

h

)3

+74 ·W2

h
+130 (11.226)

C1 = C2 = C3 = C4

= 10−12 ·W1 ·

(
0.25 ·X ·

(
h

W1

)1/3

−60+
h

2 ·W2
−0.375 ·W1

h
·
(

1−W2

h

))
(11.227)

Y = 165.6 ·W2

h
+31.2

√
W2

h
−11.8 ·

(
W2

h

)2

(11.228)

L1 = 10−9 ·h ·
(

Y ·W1

h
−32 ·W2

h
+3
)
·
(

h
W1

)1.5

(11.229)

L3 = 10−9 ·h ·
(

5 ·W2

h
· cos

(
π

2
·
(

1.5−W1

h

))
−
(

1+
7 ·h
W1

)
· h
W2
−337.5

)
(11.230)

The equation of L2 is obtained from the one of L1 by exchanging the indices (W1 and W2). Note that L3 is
negative, so the model is unphysical without external microstrip lines. The above-mentioned equations are
accurate to within 5% for 0.3≤W1/h≤ 3 and 0.1≤W2/h≤ 3 (value of C1 . . .C4) or for 0.5≤W1,2/h≤ 2
(value of L1 . . .L3), respectively.
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Figure 11.10: single-symmetrical microstrip cross and its model

Some improvement should be added to the original model:

1. Comparisons with real life show that the value of L3 is too large. Multiplying it by 0.8 leads to much
better results.

2. The model can be expanded for substrates with εr 6= 9.9 by modifying the values of the capacitances:

Cx = Cx(εr = 9.9) · Z0(εr = 9.9,W = Wx)
Z0(εr = εr,sub,W = Wx)

·

√
εe f f (εr = εr,sub,W = Wx)
εe f f (εr = 9.9,W = Wx)

(11.231)

The equations of Z0 and εe f f are the ones from the microstrip lines.

A useful model for an unsymmetrical cross junction has never been published. Nonetheless, as long as the
lines that lie opposite are not to different in width, the model described here can be used as a first order
approximation. This is perfomred by replacing W1 and W2 by the arithmetic mean of the line widths that
lie opposite. This is done:

• In equation (11.226) and (11.227) for W2 only, whereas W1 is replaced by the width of the line.

• In equation (11.228) and (11.229) for W2 only, whereas W1 is replaced by the width of the line.

• In equation (11.230) for W1 and W2.

Another closed-form expression describing the non-ideal behaviour of a microstrip cross junction was pub-
lished by [41]. Additionally there have been published papers [42, 43, 44] giving analytic (but not closed-
form) expressions or just simple equivalent circuits with only a few expressions for certain topologies and
dielectric constants which are actually of no pratical use.

11.9 Microstrip via hole
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Figure 11.11: microstrip via hole to ground

According to Marc E. Goldfarb and Robert A. Pucel [45] a via hole ground in microstrip is a series of a
resistance and an inductance. The given model for a cylindrical via hole has been verified numerically and
experimentally for a range of h < 0.03 ·λ0.

L =
µ0

2π
·

(
h · ln

(
h+
√

r2 +h2

r

)
+

3
2
·
(

r−
√

r2 +h2
))

(11.232)

whence h is the via length (substrate height) and r = D/2 the via’s radius.

R = R( f = 0) ·

√
1+

f
fδ

(11.233)

with
fδ =

ρ

π ·µ0 · t2 (11.234)

The relationship for the via resistance can be used as a close approximation and is valid independent of the
ratio of the metalization thickness t to the skin depth. In the formula ρ denotes the specific resistance of
the conductor material.

11.10 Bondwire
Wire inductors, so called bond wire connections, are used to connect active and passive circuit components
as well as micro devices to the real world.
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Figure 11.12: bond wire and its equivalent circuit

11.10.1 Freespace model
The freespace inductance L of a wire of diameter d and length l is given [46, 47] by

L =
µ0

2π
· l

ln

2l
d

+

√
1+
(

2l
d

)2
+

d
2l
−

√
1+
(

d
2l

)2

+C

 (11.235)

where the frequency-dependent correction factor C is a function of bond wire diameter and its material skin
depth δ is expressed as

C =
µr

4
· tanh

(
4δ

d

)
(11.236)

δ =
1√

π ·σ · f ·µ0 ·µr
(11.237)

where σ is the conductivity of the wire material. When δ/d is small, C = δ/d. The wire resistance R is
given by

R =
ρ · l

π ·r2 (11.238)

with ρ = 1/σ and r = d/2.

11.10.2 Mirror model
The effect of the ground plane on the inductance valueof a wire has also been considered. If the wire is
at a distance h above the ground plane, it sees its image at 2h from it. The wire and its image result in a
mutual inductance. Since the image wire carries a current opposite to the current flow in the bond wire, the
effective inductance of the bond wire becomes

L =
µ0

2π
· l

ln
(

4h
d

)
+ ln

(
l +
√

l2 +d2/4
l +
√

l2 +4h2

)
+

√
1+

4h2

l2 −

√
1+

d2

4l2 −2
h
l

+
d
2l

 (11.239)

Mirror is a strange model that is frequency independent. Whereas computations are valid, hypothesis are
arguable. Indeed, they did the assumption that the ground plane is perfect that is really a zero order model
in the high frequency domain.
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Chapter 12

Coplanar components

12.1 Coplanar waveguides (CPW)

12.1.1 Definition
A coplanar line is a structure in which all the conductors supporting wave propagation are located on the
same plane, i.e. generally the top of a dielectric substrate. There exist two main types of coplanar lines:
the first, called coplanar waveguide (CPW), that we will study here, is composed of a median metallic strip
separated by two narrow slits from a infinite ground plane, as may be seen on the figure below.

Figure 12.1: coplanar waveguide line

The characteristic dimensions of a CPW are the central strip width W and the width of the slots s. The
structure is obviously symmetrical along a vertical plane running in the middle of the central strip.
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The other coplanar line, called a coplanar slot (CPS) is the complementary of that topology, consisting of
two strips running side by side.

12.1.2 Quasi-static analysis by conformal mappings
A CPW can be quasi-statically analysed by the use of conformal mappings. Briefly speaking, it consists in
transforming the geometry of the PCB into another conformation, whose properties make the computations
straightforward. The interested reader can consult the pp. 886 - 910 of [48] which has a correct coverage
of both the theoretical and applied methods. The French reader interested in the mathematical arcanes
involved is referred to the second chapter of [49] (which may be out of print nowadays), for an extensive
review of all the theoretical framework. The following analysis is mainly borrowed from [39], pp. 375 et
seq. with additions from [48].

The CPW of negligible thickness located on top of an infinitely deep substrate, as shown on the left of the
figure below, can be mapped into a parallel plate capacitor filled with dielectric ABCD using the conformal
function:

w =
Z z

z0

dz√
(z−W/2)(z−W/2− s)

. (12.1)

To further simplify the analysis, the original dielectric boundary is assumed to constitute a magnetic wall,
so that BC and AD become magnetic walls too and there is no resulting fringing field in the resulting
capacitor. With that assumption, the capacitance per unit length is merely the sum of the top (air filled) and
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bottom (dielectric filled) partial capacitances. The latter is given by:

Cd = 2 ·ε0 ·εr ·
K(k1)
K′(k1)

(12.2)

while the former is:

Ca = 2 ·ε0 ·
K(k1)
K′(k1)

(12.3)

In both formulae K(k) and K′(k) represent the complete elliptic integral of the first kind and its complement,
and k1 = W

W+2s . While the separate evaluation of K and K′ is more or less tricky, the K/K′ ratio lets itself
compute efficiently through the following formulae:

K(k)
K′(k)

=
π

ln
(

2 1+
√

k′

1−
√

k′

) for 0≤ k ≤ 1√
2

(12.4)

K(k)
K′(k)

=
ln
(

2 1+
√

k
1−
√

k

)
π

for
1√
2
≤ k ≤ 1 (12.5)

with k′ being the complementary modulus: k′ =
√

1− k2. While [48] states that the accuracy of the above
formulae is close to 10−5, [39] claims it to be 3 ·10−6. It can be considered as exact for any practical
purposes.

The total line capacitance is thus the sum of Cd and Ca. The effective permittivity is therefore:

εre =
εr +1

2
(12.6)

and the impedance:

Z =
30π
√

εre
· K
′(k1)

K(k1)
(12.7)
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Figure 12.2: characteristic impedance as approximated by eq. (12.7) for εr = 1.0 (air), 3.78 (quartz) and
9.5 (alumina)

In practical cases, the substrate has a finite thickness h. To carry out the analysis of this conformation,
a preliminary conformal mapping transforms the finite thickness dielectric into an infinite thickness one.
Only the effective permittivity is altered; it becomes:

εre = 1+
εr−1

2
· K(k2)

K′(k2)
· K
′(k1)

K(k1)
(12.8)

where k1 is given above and

k2 =
sinh

(
πW
4h

)
sinh

(
π · (W +2s)

4h

) . (12.9)

Finally, let us consider a CPW over a finite thickness dielectric backed by an infinite ground plane. In
this case, the quasi-TEM wave is an hybrid between microstrip and true CPW mode. The equations then
become:

εre = 1+q · (εr−1) (12.10)

where q, called filling factor is given by:

q =

K(k3)
K′(k3)

K(k1)
K′(k1)

+
K(k3)
K′(k3)

(12.11)

and

k3 =
tanh

(
πW
4h

)
tanh

(
π · (W +2s)

4h

) (12.12)
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The impedance of this line amounts to:

Z =
60π
√

εre
· 1

K(k1)
K′(k1)

+
K(k3)
K′(k3)

(12.13)

12.1.3 Effects of metalization thickness
In most practical cases, the strips are very thin, yet their thickness cannot be entirely neglected. A first
order correction to take into account the non-zero thickness of the conductor is given by [39]:

se = s−∆ (12.14)

and
We = W +∆ (12.15)

where

∆ =
1.25t

π
·
(

1+ ln
(

4πW
t

))
(12.16)

In the computation of the impedance, both the k1 and the effective dielectric constant are affected, where-
fore k1 must be substituted by an “effective” modulus ke, with:

ke =
We

We +2se
≈ k1 +

(
1− k2

1
)
· ∆

2s
(12.17)

and

ε
t
re = εre−

0.7 · (εre−1) · t
s

K(k1)
K′(k1)

+0.7 · t
s

(12.18)

12.1.4 Effects of dispersion
The effects of dispersion in CPW are similar to those encountered in the microstrip lines, though the net
effect on impedance is somewhat different. [39] gives a closed form expression to compute εre( f ) from its
quasi-static value: √

εre( f ) =
√

εre(0)+
√

εr−
√

εre(0)

1+G ·
(

f
fT E

)−1.8 (12.19)

where:

G = eu· ln
(W

s

)
+v (12.20)

u = 0.54−0.64p+0.015p2 (12.21)

v = 0.43−0.86p+0.54p2 (12.22)

p = ln
(W

h

)
(12.23)

and fT E is the cut-off frequency of the T E0 mode, defined by:

fT E =
c

4h ·
√

εr−1
. (12.24)

This dispersion expression was first reported by [50] and has been reused and extended in [51]. The
accuracy of this expression is claimed to be better than 5% for 0.1≤W/h≤ 5, 0.1≤W/s≤ 5, 1.5≤ εr ≤ 50
and 0≤ f / fT E ≤ 10.
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12.1.5 Evaluation of losses
As for microstrip lines, the losses in CPW results of at least two factors: a dielectric loss αd and conductor
losses αCW

c . The dielectric loss αd is identical to the microstrip case, see eq. (11.79) on page 155.

The αCW
c part of the losses is more complex to evaluate. As a general rule, it might be written:

α
CW
c = 0.023 · Rs

Z0cp

[
∂Za

0cp

∂s
−

∂Za
0cp

∂W
−

∂Za
0cp

∂t

]
in dB/unit length (12.25)

where Za
0cp stands for the impedance of the coplanar waveguide with air as dielectric and Rs is the surface

resistivity of the conductors (see eq. (11.81) on page 156).

Through a direct approach evaluating the losses by conformal mapping of the current density, one obtains
[39], first reported in [52] and finally applied to coplanar lines by [53]:

α
CW
c =

Rs ·
√

εre

480π ·K(k1) ·K′(k1) ·
(
1− k2

1

) ·(
1
a

[
π+ ln

8πa · (1− k1)
t · (1+ k1)

]
+

1
b

[
π+ ln

8πb · (1− k1)
t · (1+ k1)

]) (12.26)

In the formula above, a = W/2,b = s+W/2 and it is assumed that t > 3δ, t�W and t� s.

12.1.6 S- and Y-parameters of the single coplanar line
The computation of the coplanar waveguide lines S- and Y-parameters is equal to all transmission lines
(see section section 9.20 on page 99).

12.2 Coplanar waveguide open
The behaviour of an open circuit as shown in fig. 12.3 is very similar to that in a microstrip line; that is, the
open circuit is capacitive in nature.

Figure 12.3: coplanar waveguide open-circuit

A very simple approximation for the equivalent length extension ∆l associated with the fringing fields has
been given by K.Beilenhoff [54].

∆lopen =
Copen

C′
≈ W +2s

4
(12.27)
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For the open end, the value of ∆l is not influenced significantly by the metalization thickness and the gap
width g when g > W +2s. Also, the effect of frequency and aspect ration W/(W +2s) is relatively weak.
The above approximation is valid for 0.2≤W/(W +2s)≤ 0.8.

The open end capacitance Copen can be written in terms of the capacitance per unit length and the wave
resistance.

Copen = C′ ·∆lopen =
√

εr,e f f

c0 ·ZL
·∆lopen (12.28)

12.3 Coplanar waveguide short
There is a similar simple approximation for a coplanar waveguide short-circuit, also given in [54]. The
short circuit is inductive in nature.

Figure 12.4: coplanar waveguide short-circuit

The equivalent length extension ∆l associated with the fringing fields is

∆lshort =
Lshort

L′
≈ W +2s

8
(12.29)

Equation (12.29) is valid when the metalization thickness t does not become too large (t < s/3).

The short end inductance Lshort can be written in terms of the inductance per unit length and the wave
resistance.

Lshort = L′ ·∆lshort =
√

εr,e f f ·ZL

c0
·∆lshort (12.30)

According to W.J.Getsinger [55] the CPW short-circuit inductance per unit length can also be modeled by

Lshort =
2
π
·ε0 ·εr,e f f · (W + s) ·Z2

L ·
(

1− sech
(

π ·ZF0

2 ·ZL ·
√

εr,e f f

))
(12.31)

based on his duality [56] theory.

12.4 Coplanar waveguide gap
According to W.J.Getsinger [56] a coplanar series gap (see fig. 12.5) is supposed to be the dual problem of
the inductance of a connecting strip between twin strip lines.
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Figure 12.5: coplanar waveguide series gap

The inductance of such a thin strip with a width g and the length W is given to a good approximation by

L =
µ0 ·W

2π
·

(
p−
√

1+ p2 + ln

(
1+
√

1+ p2

p

))
(12.32)

where p = g/4W and g,W � λ. Substituting this inductance by its equivalent capacitance of the gap in
CPW yields

C = L ·
4 ·εr,e f f

Z2
F0

=
2 ·ε0 ·εr,e f f ·W

π
·

(
p−
√

1+ p2 + ln

(
1+
√

1+ p2

p

)) (12.33)

12.5 Coplanar waveguide step
The coplanar step discontinuity shown in figure 12.6 has been analysed by C. Sinclair [57].

Figure 12.6: coplanar waveguide impedance step and equivalent circuit

The symmetric step change in width of the centre conductor is considered to have a similar equivalent
circuit as a step of a parallel plate guide - this is a reasonable approximation to the CPW step as in the
CPW the majority of the field is between the inner and outer conductors with some fringing.
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The actual CPW capacitance can be expressed as

C = x · ε0

π
·
(

α2 +1
α
· ln
(

1+α

1−α

)
−2 · ln

(
4 ·α

1−α2

))
(12.34)

where
α =

s1

s2
,α < 1 and x =

x1 + x2

2
(12.35)

The capacitance per unit length equivalence yields

x1 =
C′ (W1,s1) ·s1

ε0
and x2 =

C′ (W2,s2) ·s2

ε0
(12.36)

with

C′ =
√

εr,e f f

c0 ·ZL
(12.37)

The average equivalent width x of the parallel plate guide can be adjusted with an expression that uses
weighted average of the gaps s1 and s2. The final expression has not been discussed in [57]. The given
equations are validated over the following ranges: 2 < εr < 14, h > W +2s and f < 40GHz.

The Z-parameters of the equivalent circuit depicted in fig. 12.6 are

Z11 = Z21 = Z12 = Z22 =
1

jωC
(12.38)

The MNA matrix representation for the AC analysis can be derived from the Z-parameters in the following
way. 

. . 1 0

. . 0 1
−1 0 Z11 Z12
0 −1 Z21 Z22

 ·


V1
V2
Iin
Iout

=


I1
I2
0
0

 (12.39)

The above expanded representation using the Z-parameters is necessary because the Y-parameters are in-
finite. During DC analysis the equivalent circuit is a voltage source between both terminals with zero
voltage.

The S-parameters of the topology are

S11 = S22 =− Z0

2Z +Z0
(12.40)

S12 = S21 = 1+S11 =
2Z

2Z +Z0
(12.41)
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Chapter 13

Other types of transmission lines

13.1 Coaxial cable

Figure 13.1: coaxial line

13.1.1 Characteristic impedance
The characteristic impedance of a coaxial line can be calculated as follows:

ZL =
ZF0

2π ·
√

εr
· ln
(

D
d

)
(13.1)

13.1.2 Losses
Overall losses in a coaxial cable consist of dielectric and conductor losses. The dielectric losses compute
as follows:

αd =
π

c0
· f ·
√

εr · tanδ (13.2)

The conductor (i.e. ohmic) losses are specified by

αc =
1
2
·
√

εr ·


1
D

+
1
d

ln
(

D
d

)
 · RS

ZF0
(13.3)
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with RS denoting the sheet resistance of the conductor material, i.e. the skin resistance

RS =
√

π · f ·µr ·µo ·ρ (13.4)

13.1.3 Cutoff frequencies
In normal operation a signal wave passes through the coaxial line as a TEM wave with no electrical or
magnetic field component in the direction of propagation. Beyond a certain cutoff frequency additional
(unwanted) higher order modes are excited.

fT E ≈
c0

π · (D+d)
→ TE(1,1) mode (13.5)

fT M ≈
c0

2 · (D−d)
→ TM(n,1) mode (13.6)

13.2 Twisted pair
The twisted pair configurations as shown in fig. 13.2 provides good low frequency shielding. Undesired
signals tend to be coupled equally into eachline of the pair. A differential receiver will therefore completely
cancel the interference.

Figure 13.2: twisted pair configuration

13.2.1 Quasi-static model
According to P. Lefferson [58] the characteristic impedance and effective dielectric constant of a twisted
pair can be calculated as follows.

ZL =
ZF0

π ·√εr,e f f
·acosh

(
D
d

)
(13.7)

εr,e f f = εr,1 +q · (εr− εr,1) (13.8)

with
q = 0.25+0.0004 ·θ2 and θ = atan(T ·π ·D) (13.9)

whereas θ is the pitch angle of the twist; the angle between the twisted pair’s center line and the twist. It
was found to be optimal for θ to be between 20◦and 45◦. T denotes the twists per length. Eq. (13.9) is
valid for film insulations, for the softer PTFE material it should be modified as follows.

q = 0.25+0.001 ·θ2 (13.10)
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Assuming air as dielectric around the wires yields 1’s replacing εr,1 in eq. (13.8). The wire’s total length
before twisting in terms of the number of turns N is

l = N ·π ·D ·
√

1+
1

tan2 θ
(13.11)

13.2.2 Transmission losses
The propagation constant γ of a general transmission line is given by

γ =
√

(R′+ jωL′) · (G′+ jωC′) (13.12)

Using some transformations of the formula gives an expression with and without the angular frequency.

γ =
√

(R′+ jωL′) · (G′+ jωC′)

=
√

L′C′ ·

√
R′G′

L′C′
+ jω

(
R′

L′
+

G′

C′

)
−ω2

=
√

L′C′ ·

√(
1
2
·
(

R′

L′
+

G′

C′

)
+ jω

)2

− 1
4
·
(

R′

L′
+

G′

C′

)2

+
R′G′

L′C′

(13.13)

For high frequencies eq.(13.13) can be approximated to

γ≈
√

L′C′ ·
(

1
2
·
(

R′

L′
+

G′

C′

)
+ jω

)
(13.14)

Thus the real part of the propagation constant γ yields

α = Re{γ}=
√

L′C′ · 1
2
·
(

R′

L′
+

G′

C′

)
(13.15)

With

ZL =

√
L′

C′
(13.16)

the expression in eq.(13.15) can be written as

α = αc +αd =
1
2
·
(

R′

ZL
+G′ZL

)
(13.17)

whereas αc denotes the conductor losses and αd the dielectric losses.

Conductor losses

The sheet resistance R’ of a transmission line conductor is given by

R′ =
ρ

Ae f f
(13.18)

whereas ρ is the specific resistance of the conductor material and Ae f f the effective area of the conductor
perpendicular to the propagation direction. At higher frequencies the area of the conductor is reduced by
the skin effect. The skin depth is given by

δs =
√

ρ

π · f ·µ
(13.19)

Thus the effective area of a single round wire yields

Ae f f = π ·
(
r2− (r−δs)2) (13.20)

whereas r denotes the radius of the wire. This means the overall conductor attenuation constant αc for a
single wire gives

αc =
R′

2 ·ZL
=

ρ

2 ·ZL ·π · (r2− (r−δs)2)
(13.21)
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Dielectric losses

The dielectric losses are determined by the dielectric loss tangent.

tanδd =
G′

ωC′
→ G′ = ωC′ · tanδd (13.22)

With

C′ =
1
ω
· Im

{
γ

ZL

}
(13.23)

the equation (13.22) can be rewritten to

G′ =
β

ZL
· tanδd =

ω

vph ·ZL
· tanδd

=
2π · f ·√εr,e f f

c0 ·ZL
· tanδd =

2π ·√εr,e f f

λ0 ·ZL
· tanδd

(13.24)

whereas vph denotes the phase velocity, c0 the speed of light, εr,e f f the effective dielectric constant and λ0
the freespace wavelength. With these expressions at hand it is possible to find a formula for the dielectric
losses of the transmission line.

αd =
1
2
·G′ZL =

π ·√εr,e f f

λ0
· tanδd (13.25)

Overall losses of the twisted pair configuration

Transmission losses consist of conductor losses, dielectric losses as well as radiation losses. The above
expressions for the conductor and dielectric losses are considered to be first order approximations. The
conductor losses have been derived for a single round wire. The overall conductor losses due to the twin
wires must be doubled. The dielectric losses can be used as is. Radiation losses are neglected.
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Chapter 14

Synthesizing circuits

14.1 Attenuators
Attenuators are used to damp a signal. Using pure ohmic resistors the circuit can be realized for a very
high bandwidth, i.e. from DC to many GHz. The power attenuation 0 < L≤ 1 is defined as:

L =
Pin

Pout
=

V 2
in

Zin
· Zout

V 2
out

=
(

Vin

Vout

)2

· Zout

Zin
(14.1)

where Pin and Pout are the input and output power and Vin and Vout are the input and output voltages.

Figure 14.1: π-topology of an attenuator

Fig. 14.1 shows an attenuator using the π-topology. The conductances can be calculated as follows.

Y2 =
L−1

2 ·
√

L ·Zin ·Zout
(14.2)

Y1 = Y2 ·
(√

Zout

Zin
·L−1

)
(14.3)

Y3 = Y2 ·
(√

Zin

Zout
·L−1

)
(14.4)

where Zin and Zout are the input and output reference impedances, respectively. The π-attenuator can be
used for an impedance ratio of:

1
L
≤ Zout

Zin
≤ L (14.5)
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Figure 14.2: T-topology of an attenuator

Fig. 14.2 shows an attenuator using the T-topology. The resistances can be calculated as follows.

Z2 =
2 ·
√

L ·Zin ·Zout

L−1
(14.6)

Z1 = Zin ·A−Z2 (14.7)
Z3 = Zout ·A−Z2 (14.8)

with A =
L+1
L−1

(14.9)

where L is the attenuation (0 < L≤ 1) according to equation 14.1 and Zin and Zout are the input and output
reference impedance, respectively. The T-attenuator can be used for an impedance ratio of:

Zout

Zin
≤ (L+1)2

4 ·L
(14.10)

14.2 Filters
One of the most common tasks in microwave technologies is to extract a frequency band from others.
Optimized filters exist in order to easily create a filter with an appropriate characteristic. The most popular
ones are:

Name Property
Bessel filter (Thomson filter) as constant group delay as possible
Butterworth filter (power-term filter) as constant amplitude transfer function as possible
Chebychev filter type I constant ripple in pass band
Chebychev filter type II constant ripple in stop band
Cauer filter (elliptical filter) constant ripple in pass and stop band

From top to bottom the following properties increase:

• ringing of step response

• phase distortion

• steepness of amplitude transfer function at the beginning of the pass band

The order n of a filter denotes the number of poles of its (voltage) transfer function. It is:

slope of asymptote =±n ·20dB/decade (14.11)

Note that this equation holds for all filter characteristics, but there are big differences concerning the atten-
uation near the pass band.
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14.2.1 LC ladder filters
The best possibility to realize a filters in VHF and UHF bands are LC ladder filters. The usual way to
synthesize them is to first calculate a low-pass (LP) filter and afterwards transform it into a high-pass (HP),
band-pass (BP) or band-stop (BS) filter. To do so, each component must be transformed into another.

In a low-pass filter, there are parallel capacitors CLP and series inductors LLP in alternating order. The other
filter classes can be derived from it:

In a high-pass filter:

CLP → LHP =
1

ω2
B ·CLP

(14.12)

LLP → CHP =
1

ω2
B ·LLP

(14.13)

In a band-pass filter:

CLP → parallel resonance circuit with (14.14)

CBP =
CLP

∆Ω
(14.15)

LBP =
∆Ω

ω1 ·ω2 ·CLP
(14.16)

LLP → series resonance circuit with (14.17)

CBP =
∆Ω

ω1 ·ω2 ·LLP
(14.18)

LBP =
LLP

∆Ω
(14.19)

In a band-stop filter:

CLP → series resonance circuit with (14.20)

CBP =
CLP

2 ·
∣∣∣∣ω2

ω1
− ω1

ω2

∣∣∣∣ (14.21)

LBP =
1

ω2 ·∆Ω ·CLP
(14.22)

LLP → parallel resonance circuit with (14.23)

CBP =
1

ω2 ·∆Ω ·LLP
(14.24)

LBP =
LLP

2 ·
∣∣∣∣ω2

ω1
− ω1

ω2

∣∣∣∣ (14.25)

Where

ω1 → lower corner frequency of frequency band (14.26)
ω2 → upper corner frequency of frequency band (14.27)
ω → center frequency of frequency band ω = 0.5 ·(ω1 +ω2) (14.28)

∆Ω → ∆Ω =
|ω2−ω1|

ω
(14.29)
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Butterworth

The k-th element of an n order Butterworth low-pass ladder filter is:

capacitance: Ck =
Xk

Z0
(14.30)

inductance: Lk =Xk ·Z0 (14.31)

with Xk =
2

ωB
· sin

(2 ·k +1) ·π
2 ·n

(14.32)

The order of the Butterworth filter is dependent on the specifications provided by the user. These specifi-
cations include the edge frequencies and gains.

n =
log
(

10−0.1·αstop −1
10−0.1·αpass −1

)
2 · log

(
ωstop

ωpass

) (14.33)

Chebyshev I

The equations for a Chebyshev type I filter are defined recursivly. With RdB being the passband ripple in
decibel, the k-th element of an n order low-pass ladder filter is:

capacitance: Ck =
Xk

Z0
(14.34)

inductance: Lk = Xk ·Z0 (14.35)

with Xk =
2

ωB
·gk (14.36)

r = sinh

(
1
n
·arsinh

1√
10RdB/10−1

)
(14.37)

ak = sin
(2 ·k +1) ·π

2 ·n
(14.38)

gk =


ak

r
for k = 0

ak−1 ·ak

gk−1 ·
(

r2 + sin2 k ·π
n

) for k ≥ 1 (14.39)

Xk =
2

ωB
·gk (14.40)

The order of the Chebychev filter is dependent on the specifications provided by the user. The general form
of the calculation for the order is the same as for the Butterworth, except that the inverse hyperbolic cosine
function is used in place of the common logarithm function.

n =
sech

(
10−0.1·αstop −1
10−0.1·αpass −1

)
2 ·sech

(
ωstop

ωpass

) (14.41)

Chebyshev II

Because of the nature of the derivation of the inverse Chebychev approxiation function from the standard
Chebychev approximation the calculation of the order (14.41) is the same.
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Chapter 15

Mathematical background

15.1 N-port matrix conversions
When dealing with n-port parameters it may be necessary or convenient to convert them into other ma-
trix representations used in electrical engineering. The following matrices and notations are used in the
transformation equations.

[X ]−1 = inverted matrix of [X ]

[X ]∗ = complex conjugated matrix of [X ]

[E] =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 identity matrix

[S] = S-parameter matrix

[Z] = impedance matrix

[Y ] = admittance matrix

[
Zre f

]
=


Z0,1 0 . . . 0

0 Z0,2 . . . 0
...

...
. . .

...
0 0 . . . Z0,N


Z0,n = reference impedance of port n

[Gre f ] =


G1 0 . . . 0
0 G2 . . . 0
...

...
. . .

...
0 0 . . . GN


Gn =

1√
Re
∣∣Z0,n

∣∣
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15.1.1 Renormalization of S-parameters to different port impedances
During S-parameter usage it sometimes appears to have not all components in a circuit normalized to the
same impedance. But calculations can only be performed with all ports being normalized to the same
impedance. In the field of high frequency techniques this is usually 50Ω. In order to transform to different
port impedances, the following computation must be applied to the resulting S-parameter matrix.[

S′
]
= [A]−1 · ([S]− [R]) · ([E]− [R] · [S])−1 · [A] (15.1)

With

Zn = reference impedance of port n after the normalizing process

Zn,be f ore = reference impedance of port n before the normalizing process

[S] = original S-parameter matrix

[S′] = recalculated scattering matrix

[R] =


r (Z1) 0 . . . 0

0 r (Z2) . . . 0
...

...
. . .

...
0 0 . . . r (ZN)

 reflection coefficient matrix

r (Zn) =
Zn−Zn,be f ore

Zn +Zn,be f ore

[A] =


A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . AN



An =

√
Zn

Zn,be f ore
· 1

Zn +Zn,be f ore

15.1.2 Transformations of n-Port matrices
S-parameter, admittance and impedance matrices are not limited to One- or Two-Port definitions. They are
defined for an arbitrary number of ports. The following section contains transformation formulas forth and
back each matrix representation.

Converting a scattering parameter matrix to an impedance matrix is done by the following formula.

[Z] =
[
Gre f

]−1 · ([E]− [S])−1 ·
(
[S] ·

[
Zre f

]
+
[
Zre f

])
·
[
Gre f

]
(15.2)

=
[
Gre f

]−1 · ([E]− [S])−1 · ([S]+ [E]) ·
[
Zre f

]
·
[
Gre f

]
(15.3)

Converting a scattering parameter matrix to an admittance matrix can be achieved by computing the fol-
lowing formula.

[Y ] =
[
Gre f

]−1 ·
(
[S] ·

[
Zre f

]
+
[
Zre f

])−1 · ([E]− [S]) ·
[
Gre f

]
(15.4)

=
[
Gre f

]−1 ·
[
Zre f

]−1 · ([S]+ [E])−1 · ([E]− [S]) ·
[
Gre f

]
(15.5)
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Converting an impedance matrix to a scattering parameter matrix is done by th following formula.

[S] =
[
Gre f

]
·
(
[Z]−

[
Zre f

])
·
(
[Z]+

[
Zre f

])−1 ·
[
Gre f

]−1 (15.6)

Converting an admittance matrix to a scattering parameter matrix is done by the following formula.

[S] =
[
Gre f

]
·
(
[E]−

[
Zre f

]
· [Y ]

)
·
(
[E]+

[
Zre f

]
· [Y ]

)−1 ·
[
Gre f

]−1 (15.7)

Converting an impedance matrix to an admittance matrix is done by the following simple formula.

[Y ] = [Z]−1 (15.8)

Converting an admittance matrix to an impedance matrix is done by the following simple formula.

[Z] = [Y ]−1 (15.9)

15.1.3 Two-Port transformations
Two-Port matrix conversion based on current and voltage

Figure 15.1: twoport definition using current and voltage

There are five different matrix forms for the correlations between the quantities at the transmission twoport
shown in fig. 15.1, each having its special meaning when connecting twoports with each other.

• Y-parameters (also called admittance parameters)(
I1
I2

)
=
(

Y 11 Y 12
Y 21 Y 22

)
·
(

V 1
V 2

)
(15.10)

• Z-parameters (also called impedance parameters)(
V 1
V 2

)
=
(

Z11 Z12
Z21 Z22

)
·
(

I1
I2

)
(15.11)

• H-parameters (also called hybrid parameters)(
V 1
I2

)
=
(

H11 H12
H21 H22

)
·
(

I1
V 2

)
(15.12)

• G-parameters (also called C-parameters)(
I1
V 2

)
=
(

G11 G12
G21 G22

)
·
(

V 1
I2

)
(15.13)

• A-parameters (also called chain or ABCD-parameters)(
V 1
I1

)
=
(

A11 A12
A21 A22

)
·
(

V 2
−I2

)
(15.14)
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parallel-parallel
connection

series-series
connection

series-parallel
connection

parallel-series
connection

cascaded twoports

Basically there are five different kinds of twoport connections. Using the corresponding twoport matrix
representations, complicated networks can be analysed by connecting elementary twoports. The linear
correlations between the complex currents and voltages rms values of a twoport are described by four
complex twoport parameters (i.e. the twoport matrix). These parameters are used to describe the AC
behaviour of the twoport.

• parallel-parallel connection: use Y-parameters: Y = Y1 +Y2

• series-series connection: use Z-parameters: Z = Z1 +Z2

• series-parallel connection: use H-parameters: H = H1 +H2

• parallel-series connection: use G-parameters: G = G1 +G2

• chain connection: use A-parameters: A = A1 ·A2

A Y Z H G

A
A11 A12

A21 A22

−Y22

Y21

−1
Y21

−∆Y
Y21

−Y11

Y21

Z11

Z21

∆Z
Z21

1
Z21

Z22

Z21

−∆H
H21

−H11

H21
−H22

H21

−1
H21

1
G21

G22

G21
G11

G21

∆G
G21

Y

A22

A12

−∆A
A12

−1
A12

A11

A12

Y11 Y12

Y21 Y22

Z22

∆Z
−Z12

∆Z
−Z21

∆Z
Z11

∆Z

1
H11

−H12

H11
H21

H11

∆H
H11

∆G
G22

G12

G22
−G21

G22

1
G22

Z

A11

A21

∆A
A21

1
A21

A22

A21

Y22

∆Y
−Y12

∆Y
−Y21

∆Y
Y11

∆Y

Z11 Z12

Z21 Z22

∆H
H22

H12

H22
−H21

H22

1
H22

1
G11

−G12

G11
G21

G11

∆G
G11

H

A12

A22

∆A
A22

−1
A22

A21

A22

1
Y11

−Y12

Y11
Y21

Y11

∆Y
Y11

∆Z
Z22

Z12

Z22
−Z21

Z22

1
Z22

H11 H12

H21 H22

G22

∆G
−G12

∆G
−G21

∆G
G11

∆G

G

A21

A11

−∆A
A11

1
A11

A12

A11

∆Y
Y22

Y12

Y22
−Y21

Y22

1
Y22

1
Z11

−Z12

Z11
Z21

Z11

∆Z
Z11

H22

∆H
−H12

∆H
−H21

∆H
H11

∆H

G11 G12

G21 G22
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Two-Port matrix conversion based on signal waves

Figure 15.2: twoport definition using signal waves

There are two different matrix forms for the correlations between the quantities at the transmission twoport
shown in fig. 15.2.

• S-parameters (also called scattering parameters)(
b1
b2

)
=
(

S11 S12
S21 S22

)
·
(

a1
a2

)
(15.15)

• T-parameters (also called transfer scattering parameters)(
a1
b1

)
=
(

T 11 T 12
T 21 T 22

)
·
(

b2
a2

)
(15.16)

When connecting cascaded twoports it is possible to compute the resulting transfer scattering parameters
by the following equation.

T = T1 ·T2 (15.17)

According to Janusz A. Dobrowolski [59] the following table contains the matrix transformation formulas.

S T

S
S11 S12

S21 S22

T12

T22

∆T
T22

1
T22

−T21

T22

T

−∆S
S21

S11

S21
−S22

S21

1
S21

T11 T12

T21 T22

Mixed Two-Port matrix conversions

Sometimes it may be useful to have a twoport matrix representation based on signal waves in a represen-
tation based on voltage and current and the other way around. There are two more parameters involved in
this case: The reference impedance at port 1 (denoted as Z1) and the reference impedance at port 2 (denoted
as Z2).
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Converting from scattering parameters to chain parameters results in

A11 =
Z∗1 +Z1 ·S11−Z∗1 ·S22−Z1 ·∆S

2 ·S21 ·
√

Re(Z1) ·Re(Z2)
(15.18)

A12 =
Z∗1 ·Z∗2 +Z1 ·Z∗2 ·S11 +Z∗1 ·Z2 ·S22 +Z1 ·Z2 ·∆S

2 ·S21 ·
√

Re(Z1) ·Re(Z2)
(15.19)

A21 =
1−S11−S22 +∆S

2 ·S21 ·
√

Re(Z1) ·Re(Z2)
(15.20)

A22 =
Z∗2 −Z∗2 ·S11 +Z2 ·S22−Z2 ·∆S

2 ·S21 ·
√

Re(Z1) ·Re(Z2)
(15.21)

Converting from chain parameters to scattering parameters results in

S11 =
A11 ·Z2 +A12−A21 ·Z∗1 ·Z2−A22 ·Z∗1
A11 ·Z2 +A12 +A21 ·Z1 ·Z2 +A22 ·Z1

(15.22)

S12 =
∆A ·2 ·

√
Re(Z1) ·Re(Z2)

A11 ·Z2 +A12 +A21 ·Z1 ·Z2 +A22 ·Z1
(15.23)

S21 =
2 ·
√

Re(Z1) ·Re(Z2)
A11 ·Z2 +A12 +A21 ·Z1 ·Z2 +A22 ·Z1

(15.24)

S22 =
−A11 ·Z∗2 +A12−A21 ·Z1 ·Z∗2 +A22 ·Z1

A11 ·Z2 +A12 +A21 ·Z1 ·Z2 +A22 ·Z1
(15.25)

Converting from scattering parameters to hybrid parameters results in

H11 = Z1 ·
(1+S11) · (1+S22)−S12 ·S21

(1−S11) · (1+S22)+S12 ·S21
(15.26)

H12 =
√

Z1

Z2
· 2 ·S12

(1−S11) · (1+S22)+S12 ·S21
(15.27)

H21 =
√

Z1

Z2
· −2 ·S21

(1−S11) · (1+S22)+S12 ·S21
(15.28)

H22 =
1
Z2
· (1−S11) · (1−S22)−S12 ·S21

(1−S11) · (1+S22)+S12 ·S21
(15.29)

Converting from hybrid parameters to scattering parameters results in

S11 =
(H11−Z1) · (1+Z2 ·H22)−Z2 ·H12 ·H21

(H11 +Z1) · (1+Z2 ·H22)−Z2 ·H12 ·H21
(15.30)

S12 =
2 ·H12 ·

√
Z1 ·Z2

(H11 +Z1) · (1+Z2 ·H22)−Z2 ·H12 ·H21
(15.31)

S21 =
−2 ·H21 ·

√
Z1 ·Z2

(H11 +Z1) · (1+Z2 ·H22)−Z2 ·H12 ·H21
(15.32)

S22 =
(H11 +Z1) · (1−Z2 ·H22)+Z2 ·H12 ·H21

(H11 +Z1) · (1+Z2 ·H22)−Z2 ·H12 ·H21
(15.33)
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Converting from scattering parameters to the second type of hybrid parameters results in

G11 =
1
Z1
· (1−S11) · (1−S22)−S12 ·S21

(1+S11) · (1−S22)+S12 ·S21
(15.34)

G12 =
√

Z2

Z1
· −2 ·S12

(1+S11) · (1−S22)+S12 ·S21
(15.35)

G21 =
√

Z2

Z1
· 2 ·S21

(1+S11) · (1−S22)+S12 ·S21
(15.36)

G22 = Z2 ·
(1+S11) · (1+S22)−S12 ·S21

(1+S11) · (1−S22)+S12 ·S21
(15.37)

Converting from the second type of hybrid parameters to scattering parameters results in

S11 =
(1−G11 ·Z1) · (G22 +Z2)+Z1 ·G12 ·G21

(1+G11 ·Z1) · (G22 +Z2)−Z1 ·G12 ·G21
(15.38)

S12 =
−2 ·G12 ·

√
Z1 ·Z2

(1+G11 ·Z1) · (G22 +Z2)−Z1 ·G12 ·G21
(15.39)

S21 =
2 ·G21 ·

√
Z1 ·Z2

(1+G11 ·Z1) · (G22 +Z2)−Z1 ·G12 ·G21
(15.40)

S22 =
(1+G11 ·Z1) · (G22−Z2)−Z1 ·G12 ·G21

(1+G11 ·Z1) · (G22 +Z2)−Z1 ·G12 ·G21
(15.41)

Converting from scattering parameters to Y-parameters results in

Y11 =
1
Z1
· (1−S11) · (1+S22)+S12 ·S21

(1+S11) · (1+S22)−S12 ·S21
(15.42)

Y12 =
√

1
Z1 ·Z2

· −2 ·S12

(1+S11) · (1+S22)−S12 ·S21
(15.43)

Y21 =
√

1
Z1 ·Z2

· −2 ·S21

(1+S11) · (1+S22)−S12 ·S21
(15.44)

Y22 =
1
Z2
· (1+S11) · (1−S22)+S12 ·S21

(1+S11) · (1+S22)−S12 ·S21
(15.45)

Converting from Y-parameters to scattering parameters results in

S11 =
(1−Y11 ·Z1) · (1+Y22 ·Z2)+Y12 ·Z1 ·Y21 ·Z2

(1+Y11 ·Z1) · (1+Y22 ·Z2)−Y12 ·Z1 ·Y21 ·Z2
(15.46)

S12 =
−2 ·Y12 ·

√
Z1 ·Z2

(1+Y11 ·Z1) · (1+Y22 ·Z2)−Y12 ·Z1 ·Y21 ·Z2
(15.47)

S21 =
−2 ·Y21 ·

√
Z1 ·Z2

(1+Y11 ·Z1) · (1+Y22 ·Z2)−Y12 ·Z1 ·Y21 ·Z2
(15.48)

S22 =
(1+Y11 ·Z1) · (1−Y22 ·Z2)+Y12 ·Z1 ·Y21 ·Z2

(1+Y11 ·Z1) · (1+Y22 ·Z2)−Y12 ·Z1 ·Y21 ·Z2
(15.49)
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Converting from scattering parameters to Z-parameters results in

Z11 = Z1 ·
(1+S11) · (1−S22)+S12 ·S21

(1−S11) · (1−S22)−S12 ·S21
(15.50)

Z12 =
2 ·S12 ·

√
Z1 ·Z2

(1−S11) · (1−S22)−S12 ·S21
(15.51)

Z21 =
2 ·S21 ·

√
Z1 ·Z2

(1−S11) · (1−S22)−S12 ·S21
(15.52)

Z22 = Z2 ·
(1−S11) · (1+S22)+S12 ·S21

(1−S11) · (1−S22)−S12 ·S21
(15.53)

Converting from Z-parameters to scattering parameters results in

S11 =
(Z11−Z1) · (Z22 +Z2)−Z12 ·Z21

(Z11 +Z1) · (Z22 +Z2)−Z12 ·Z21
(15.54)

S12 =
√

Z2

Z1
· 2 ·Z12 ·Z1

(Z11 +Z1) · (Z22 +Z2)−Z12 ·Z21
(15.55)

S21 =
√

Z1

Z2
· 2 ·Z21 ·Z2

(Z11 +Z1) · (Z22 +Z2)−Z12 ·Z21
(15.56)

S22 =
(Z11 +Z1) · (Z22−Z2)−Z12 ·Z21

(Z11 +Z1) · (Z22 +Z2)−Z12 ·Z21
(15.57)

Two-Port parameters of passive devices

Basically the twoport parameters of passive twoports can be determined using Kirchhoff’s voltage law and
Kirchhoff’s current law or by applying the definition equations of the twoport parameters. This has been
done [60] for some example circuits.

• T-topology

Z =
[

Z1 +Z2 Z2
Z2 Z2 +Z3

]

• π-topology

Y =
[
Y1 +Y2 −Y2
−Y2 Y2 +Y3

]

• symmetric T-bridge
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Z =


Z2

1 +Z1 ·Z3

2 ·Z1 +Z3
+Z2

Z2
1

2 ·Z1 +Z3
+Z2

Z2
1

2 ·Z1 +Z3
+Z2

Z2
1 +Z1 ·Z3

2 ·Z1 +Z3
+Z2



• symmetric X-topology

Z =
1
2

[
Z1 +Z2 Z1−Z2
Z1−Z2 Z1 +Z2

]

15.2 Solving linear equation systems
When dealing with non-linear networks the number of equation systems to be solved depends on the re-
quired precision of the solution and the average necessary iterations until the solution is stable. This
emphasizes the meaning of the solving procedures choice for different problems.

The equation systems
[A] · [x] = [z] (15.58)

solution can be written as
[x] = [A]−1 · [z] (15.59)

15.2.1 Matrix inversion
The elements βµν of the inverse of the matrix A are

βµν =
Aµν

detA
(15.60)

whereas Aµν is the matrix elements aµν cofactor. The cofactor is the sub determinant (i.e. the minor) of the
element aµν multiplied with (−1)µ+ν. The determinant of a square matrix can be recursively computed by
either of the following equations.

detA =
n

∑
µ=1

aµν ·Aµν using the ν-th column (15.61)

detA =
n

∑
ν=1

aµν ·Aµν using the µ-th row (15.62)

This method is called the Laplace expansion. In order to save computing time the row or column with the
most zeros in it is used for the expansion expressed in the above equations. A sub determinant (n−1)-th
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order of a matrix’s element aµν of n-th order is the determinant which is computed by cancelling the µ-
th row and ν-th column. The following example demonstrates calculating the determinant of a 4th order
matrix with the elements of the 3rd row.∣∣∣∣∣∣∣∣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

∣∣∣∣∣∣∣∣= a31

∣∣∣∣∣∣
a12 a13 a14
a22 a23 a24
a42 a43 a44

∣∣∣∣∣∣−a32

∣∣∣∣∣∣
a11 a13 a14
a21 a23 a24
a41 a43 a44

∣∣∣∣∣∣ (15.63)

+a33

∣∣∣∣∣∣
a11 a12 a14
a21 a22 a24
a41 a42 a44

∣∣∣∣∣∣−a34

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a41 a42 a43

∣∣∣∣∣∣
This recursive process for computing the inverse of a matrix is most easiest to be implemented but as well
the slowest algorithm. It requires approximately n! operations.

15.2.2 Gaussian elimination
The Gaussian algorithm for solving a linear equation system is done in two parts: forward elimination and
backward substitution. During forward elimination the matrix A is transformed into an upper triangular
equivalent matrix. Elementary transformations due to an equation system having the same solutions for the
unknowns as the original system.

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

→


a11 a12 . . . a1n
0 a22 . . . a2n
...

...
. . .

...
0 . . . 0 ann

 (15.64)

The modifications applied to the matrix A in order to achieve this transformations are limited to the fol-
lowing set of operations.

• multiplication of a row with a scalar factor

• addition or subtraction of multiples of rows

• exchanging two rows of a matrix

Step 1: Forward elimination

The transformation of the matrix A is done in n−1 elimination steps. The new matrix elements of the k-th
step with k = 1, . . . ,n−1 are computed with the following recursive formulas.

ai j = 0 i = k +1, . . . ,n and j = k (15.65)
ai j = ai j−ak j ·aik/akk i = k +1, . . . ,n and j = k +1, . . . ,n (15.66)
zi = zi− zk ·aik/akk i = k +1, . . . ,n (15.67)

The triangulated matrix can be used to calculate the determinant very easily. The determinant of a trian-
gulated matrix is the product of the diagonal elements. If the determinant detA is non-zero the equation
system has a solution. Otherwise the matrix A is singular.

detA = a11 ·a22 · . . . ·ann =
n

∏
i=1

aii (15.68)

When using row and/or column pivoting the resulting determinant may differ in its sign and must be
multiplied with (−1)m whereas m is the number of row and column substitutions.

200



Finding an appropriate pivot element

The Gaussian elimination fails if the pivot element akk turns to be zero (division by zero). That is why
row and/or column pivoting must be used before each elimination step. If a diagonal element akk = 0, then
exchange the pivot row k with the row m > k having the coefficient with the largest absolute value. The
new pivot row is m and the new pivot element is going to be amk. If no such pivot row can be found the
matrix is singular.

Total pivoting looks for the element with the largest absolute value within the matrix and exchanges rows
and columns. When exchanging columns in equation systems the unknowns get reordered as well. For
the numerical solution of equation systems with Gaussian elimination column pivoting is clever, and total
pivoting recommended.

In order to improve numerical stability pivoting should also be applied if akk 6= 0 because division by small
diagonal elements propagates numerical (rounding) errors. This appears especially with poorly conditioned
(the two dimensional case: two lines with nearly the same slope) equation systems.

Step 2: Backward substitution

The solutions in the vector x are obtained by backward substituting into the triangulated matrix. The
elements of the solution vector x are computed by the following recursive equations.

xn =
zn

ann
(15.69)

xi =
zi

aii
−

n

∑
k=i+1

xk ·
aik

aii
i = n−1, . . . ,1 (15.70)

The forward elimination in the Gaussian algorithm requires approximately n3/3, the backward substitution
n2/2 operations.

15.2.3 Gauss-Jordan method
The Gauss-Jordan method is a modification of the Gaussian elimination. In each k-th elimination step the
elements of the k-th column get zero except the diagonal element which gets 1. When the right hand side
vector z is included in each step it contains the solution vector x afterwards.

The following recursive formulas must be applied to get the new matrix elements for the k-th elimination
step. The k-th row must be computed first.

ak j = ak j/akk j = 1 . . .n (15.71)
zk = zk/akk (15.72)

Then the other rows can be calculated with the following formulas.

ai j = ai j−aik ·ak j j = 1, . . . ,n and i = 1, . . . ,n with i 6= k (15.73)
zi = zi−aik ·zk i = 1, . . . ,n with i 6= k (15.74)

Column pivoting may be necessary in order to avoid division by zero. The solution vector x is not harmed
by row substitutions. When the Gauss-Jordan algorithm has been finished the original matrix has been
transformed into the identity matrix. If each operation during this process is applied to an identity matrix
the resulting matrix is the inverse matrix of the original matrix. This means that the Gauss-Jordan method
can be used to compute the inverse of a matrix.

Though this elimination method is easy to implement the number of required operations is larger than
within the Gaussian elimination. The Gauss-Jordan method requires approximately N3/2 + N2/2 opera-
tions.
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15.2.4 LU decomposition
LU decomposition (decomposition into a lower and upper triangular matrix) is recommended when dealing
with equation systems where the matrix A does not alter but the right hand side (the vector z) does. Both
the Gaussian elimination and the Gauss-Jordan method involve both the right hand side and the matrix
in their algorithm. Consecutive solutions of an equation system with an altering right hand side can be
computed faster with LU decomposition.

The LU decomposition splits a matrix A into a product of a lower triangular matrix L with an upper
triangular matrix U.

A = LU with L =


l11 0 . . . 0

l21 l22
. . .

...
...

. . . 0
ln1 . . . . . . lnn

 and U =


u11 u12 . . . u1n

0 u22
...

...
. . . . . .

...
0 . . . 0 unn

 (15.75)

The algorithm for solving the linear equation system Ax = z involves three steps:

• LU decomposition of the coefficient matrix A
→ Ax = LUx = z

• introduction of an (unknown) arbitrary vector y and solving the equation system Ly = z by forward
substitution
→ y = Ux = L−1z

• solving the equation system Ux = y by backward substitution
→ x = U−1y

The decomposition of the matrix A into a lower and upper triangular matrix is not unique. The most
important decompositions, based on Gaussian elimination, are the Doolittle, the Crout and the Cholesky
decomposition.

If pivoting is necessary during these algorithms they do not decompose the matrix A but the product with
an arbitrary matrix PA (a permutation of the matrix A). When exchanging rows and columns the order of
the unknowns as represented by the vector z changes as well and must be saved during this process for the
forward substitution in the algorithms second step.

Step 1: LU decomposition

Using the decomposition according to Crout the coefficients of the L and U matrices can be stored in place
the original matrix A. The upper triangular matrix U has the form

U =


1 u12 . . . u1n

0 1
...

...
. . . . . . un−1,n

0 . . . 0 1

 (15.76)

The diagonal elements u j j are ones and thus the determinant detU is one as well. The elements of the new
coefficient matrix LU for the k-th elimination step with k = 1, . . . ,n compute as follows:

u jk =
1
l j j

(
a jk−

j−1

∑
r=1

l jrurk

)
j = 1, . . . ,k−1 (15.77)

l jk = a jk−
k−1

∑
r=1

l jrurk j = k, . . . ,n (15.78)

Pivoting may be necessary as you are going to divide by the diagonal element l j j.
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Step 2: Forward substitution

The solutions in the arbitrary vector y are obtained by forward substituting into the triangulated L matrix.
At this stage you need to remember the order of unknowns in the vector z as changed by pivoting. The
elements of the solution vector y are computed by the following recursive equation.

yi =
zi

lii
−

i−1

∑
k=1

yk ·
lik
lii

i = 1, . . . ,n (15.79)

Step 3: Backward substitution

The solutions in the vector x are obtained by backward substituting into the triangulated U matrix. The
elements of the solution vector x are computed by the following recursive equation.

xi = yi−
n

∑
k=i+1

xk ·uik i = n, . . . ,1 (15.80)

The division by the diagonal elements of the matrix U is not necessary because of Crouts definition in
eq. (15.76) with uii = 1.

The LU decomposition requires approximately n3/3 + n2− n/3 operations for solving a linear equation
system. For M consecutive solutions the method requires n3/3+Mn2−n/3 operations.

15.2.5 QR decomposition
Singular matrices actually having a solution are over- or under-determined. These types of matrices can
be handled by three different types of decompositions: Householder, Jacobi (Givens rotation) and singular
value decomposition. Householder decomposition factors a matrix A into the product of an orthonormal
matrix Q and an upper triangular matrix R, such that:

A = Q ·R (15.81)

The Householder decomposition is based on the fact that for any two different vectors, v and w, with
‖v‖= ‖w‖, i.e. different vectors of equal length, a reflection matrix H exists such that:

H ·v = w (15.82)

To obtain the matrix H, the vector u is defined by:

u =
v−w
‖v−w‖

(15.83)

The matrix H defined by
H = I−2 ·u ·uT (15.84)

is then the required reflection matrix.

The equation system
A ·x = z is transformed into QR ·x = z (15.85)

With QT ·Q = I this yields
QT QR ·x = QT z → R ·x = QT z (15.86)

Since R is triangular the equation system is solved by a simple matrix-vector multiplication on the right
hand side and backward substitution.
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Step 1: QR decomposition

Starting with A1 = A, let v1 = the first column of A1, and wT
1 = (±‖v1‖,0, . . .0), i.e. a column vector

whose first component is the norm of v1 with the remaining components equal to 0. The Householder
transformation H1 = I−2 ·u1 ·uT

1 with u1 = v1−w1/‖v1−w1‖ will turn the first column of A1 into w1 as
with H1 ·A1 = A2. At each stage k, vk = the kth column of Ak on and below the diagonal with all other
components equal to 0, and wk’s kth component equals the norm of vk with all other components equal to
0. Letting Hk ·Ak = Ak+1, the components of the kth column of Ak+1 below the diagonal are each 0. These
calculations are listed below for each stage for the matrix A.

v1 =


a11
a21

...
an1

 w1 =


±‖v1‖

0
...
0

 u1 =
v1−w1

‖v1−w1‖
=


u11
u21

...
un1



H1 = I−2 ·u1 ·uT
1 → H1 ·A1 = A2 =


a11 a12 . . . a1n
0 a22 . . . a2n
...

...
. . .

...
0 an2 . . . ann


(15.87)

With this first step the upper left diagonal element of the R matrix, a11 =±‖v1‖, has been generated. The
elements below are zeroed out. Since H1 can be generated from u1 stored in place of the first column of A1
the multiplication H1 ·A1 can be performed without actually generating H1.

v2 =


0

a22
...

an2

 w1 =


0

±‖v2‖
...
0

 u2 =
v2−w2

‖v2−w2‖
=


0

u22
...

un2



H2 = I−2 ·u2 ·uT
2 → H2 ·A2 = A3 =


a11 a12 . . . a1n
0 a22 . . . a2n
... 0

. . .
...

0 0 ann


(15.88)

These elimination steps generate the R matrix because Q is orthonormal, i.e.

A = Q ·R → QT A = QT Q ·R → QT A = R

→ Hn · . . . ·H2 ·H1 ·A = R
(15.89)

After n elimination steps the original matrix A contains the upper triangular matrix R, except for the diag-
onal elements which can be stored in some vector. The lower triangular matrix contains the Householder
vectors u1 . . .un.

A =


u11 r12 . . . r1n
u21 u22 r2n

...
...

. . .
...

un1 un2 . . . unn

 Rdiag =


r11
r22
...

rnn

 (15.90)

With QT = H1 ·H2 · . . . ·Hn this representation contains both the Q and R matrix, in a packed form, of
course: Q as a composition of Householder vectors and R in the upper triangular part and its diagonal
vector Rdiag.
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Step 2: Forming the new right hand side

In order to form the right hand side QT z let remember eq. (15.84) denoting the reflection matrices used to
compute QT .

Hn · . . . ·H2 ·H1 = QT (15.91)

Thus it is possible to replace the original right hand side vector z by

Hn · . . . ·H2 ·H1 ·z = QT ·z (15.92)

which yields for each k = 1 . . .n the following expression:

Hk ·z =
(
I−2 ·uk ·uT

k
)
·z = z−2 ·uk ·uT

k ·z (15.93)

The latter uT
k ·z is a simple scalar product of two vectors. Performing eq. (15.93) for each Householder

vector finally results in the new right hand side vector QT z.

Step 3: Backward substitution

The solutions in the vector x are obtained by backward substituting into the triangulated R matrix. The
elements of the solution vector x are computed by the following recursive equation.

xi =
zi

rii
−

n

∑
k=i+1

xk ·
rik

rii
i = n, . . . ,1 (15.94)

Motivation

Though the QR decomposition has an operation count of 2n3 + 3n2 (which is about six times more than
the LU decomposition) it has its advantages. The QR factorization method is said to be unconditional
stable and more accurate. Also it can be used to obtain the minimum-norm (or least square) solution of
under-determined equation systems.

Figure 15.3: circuit with singular modified nodal analysis matrix

The circuit in fig. 15.3 has the following MNA representation:

Ax =


1

R2
0 0

0 1
R1

− 1
R1

0 − 1
R1

1
R1

 ·
V1

V2
V3

=

0.1 0 0
0 0.1 −0.1
0 −0.1 0.1

 ·
V1

V2
V3

=

 I1
−I1
I2

=

 0.1
−0.1
0.1

= z (15.95)

The second and third row of the matrix A are linear dependent and the matrix is singular because its deter-
minant is zero. Depending on the right hand side z, the equation system has none or unlimited solutions.
This is called an under-determined system. The discussed QR decomposition easily computes a valid
solution without reducing accuracy. The LU decomposition would probably fail because of the singularity.
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QR decomposition with column pivoting

Least norm problem

With some more effort it is possible to obtain the minimum-norm solution of this problem. The algorithm
as described here would probably yield the following solution:

x =

V1
V2
V3

=

1
0
1

 (15.96)

This is one out of unlimited solutions. The following short description shows how it is possible to obtain
the minimum-norm solution. When decomposing the transposed problem

AT = Q ·R (15.97)

the minimum-norm solution x̂ is obtained by forward substitution of

RT ·x = z (15.98)

and multiplying the result with Q.
x̂ = Q ·x (15.99)

In the example above this algorithm results in a solution vector with the least vector norm possible:

x̂ =

V1
V2
V3

=

 1
−0.5
0.5

 (15.100)

This algorithm outline is also sometimes called LQ decomposition because of RT being a lower triangular
matrix used by the forward substitution.

15.2.6 Singular value decomposition
Very bad conditioned (ratio between largest and smallest eigenvalue) matrices, i.e. nearly singular, or
even singular matrices (over- or under-determined equation systems) can be handled by the singular value
decomposition (SVD). This type of decomposition is defined by

A = U ·Σ ·V H (15.101)

where the U matrix consists of the orthonormalized eigenvectors associated with the eigenvalues of A ·AH ,
V consists of the orthonormalized eigenvectors of AH ·A and Σ is a matrix with the singular values of A
(non-negative square roots of the eigenvalues of AH ·A) on its diagonal and zeros otherwise.

Σ =


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σn

 (15.102)

The singular value decomposition can be used to solve linear equation systems by simple substitutions

A ·x = z (15.103)

U ·Σ ·V H ·x = z (15.104)

Σ ·V H ·x = UH ·z (15.105)

since
UH ·U = V H ·V = V ·V H = I (15.106)
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To obtain the decomposition stated in eq. (15.101) Householder vectors are computed and their transfor-
mations are applied from the left-hand side and right-hand side to obtain an upper bidiagonal matrix B
which has the same singular values as the original A matrix because all of the transformations introduced
are orthogonal.

UH (n)
B · . . . ·UH (1)

B ·A ·V (1)
B · . . . ·V

(n−2)
B = UH

B ·A ·VB = B(0) (15.107)

Specifically, UH (i)
B annihilates the subdiagonal elements in column i and V ( j)

B zeros out the appropriate
elements in row j.

B(0) =


β1 δ2 0 · · · 0
0 β2 δ3 0 0
... 0

. . . . . . 0
0 0 0 βn−1 δn
0 0 0 0 βn

 (15.108)

Afterwards an iterative process (which turns out to be a QR iteration) is used to transform the bidiagonal
matrix B into a diagonal form by applying successive Givens transformations (therefore orthogonal as well)
to the bidiagonal matrix. This iteration is said to have cubic convergence and yields the final singular values
of the matrix A.

B(0)→ B(1)→ . . .→ Σ (15.109)

B(k+1) =
(

Ũ (k)
)H
·B(k) ·Ṽ (k) (15.110)

Each of the transformations applied to the bidiagonal matrix is also applied to the matrices UB and V H
B

which finally yield the U and V H matrices after convergence.

So far for the algorithm outline. Without the very details the following sections briefly describe each part
of the singular value decomposition.

Notation

Beforehand some notation marks are going to be defined.

• Conjugate transposed (or adjoint):

A→
(
AT )∗ = (A∗)T = AH

• Euclidean norm:

‖x‖=

√
n

∑
i=1

xi ·x∗1 =

√
n

∑
i=1
|xi|2 =

√
|x1|2 + · · ·+ |xn|2 =

√
x ·xH

• Hermitian (or self adjoint):
A = AH

whereas AH denotes the conjugate transposed matrix of A. In the real case the matrix A is then said
to be “symmetric”.

• Unitary:
A ·AH = AH ·A = I

Real matrices A with this property are called “orthogonal”.
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Householder reflector

A Householder matrix is an elementary unitary matrix that is Hermitian. Its fundamental use is their ability
to transform a vector x to a multiple of~e1, the first column of the identity matrix. The elementary Hermitian
(i.e. the Householder matrix) is defined as

H = I−2 ·u ·uH where uH ·u = 1 (15.111)

Beside excellent numerical properties, their application demonstrates their efficiency. If A is a matrix, then

H ·A = A−2 ·u ·uH ·A (15.112)

= A−2 ·u ·
(
AH ·u

)H

and hence explicit formation and storage of H is not required. Also columns (or rows) can be transformed
individually exploiting the fact that uH ·A yields a scalar product for single columns or rows.

Specific case In order to reduce a 4×4 matrix A to upper triangular form successive Householder reflec-
tors must be applied.

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 (15.113)

In the first step the diagonal element a11 gets replaced and its below elements get annihilated by the multi-
plication with an appropriate Householder vector, also the remaining right-hand columns get modified.

u1 =


u11
u21
u31
u41

 H1 = I−2 ·u1 ·uH
1 → A1 = H1 ·A =


β1 a(1)

12 a(1)
13 a(1)

14

0 a(1)
22 a(1)

23 a(1)
24

0 a(1)
32 a(1)

33 a(1)
34

0 a(1)
42 a(1)

43 a(1)
44

 (15.114)

This process must be repeated

u2 =


0

u22
u32
u42

 H2 = I−2 ·u2 ·uH
2 → A2 = H2 ·A1 =


β1 a(2)

12 a(2)
13 a(2)

14

0 β2 a(2)
23 a(2)

24

0 0 a(2)
33 a(2)

34

0 0 a(2)
43 a(2)

44

 (15.115)

u3 =


0
0

u33
u43

 H3 = I−2 ·u3 ·uH
3 → A3 = H3 ·A2 =


β1 a(3)

12 a(3)
13 a(3)

14

0 β2 a(3)
23 a(3)

24

0 0 β3 a(3)
34

0 0 0 a(3)
44

 (15.116)

u4 =


0
0
0

u44

 H4 = I−2 ·u4 ·uH
4 → A4 = H4 ·A3 =


β1 a(4)

12 a(4)
13 a(4)

14

0 β2 a(4)
23 a(4)

24

0 0 β3 a(4)
34

0 0 0 β4

 (15.117)

until the matrix A contains an upper triangular matrix R. The matrix Q can be expressed as the the product
of the Householder vectors. The performed operations deliver

HH
4 ·HH

3 ·HH
2 ·HH

1 ·A = QH ·A = R → A = Q ·R (15.118)
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since Q is unitary. The matrix Q itself can be expressed in terms of Hi using the following transformation.

QH = HH
4 ·HH

3 ·HH
2 ·HH

1 (15.119)(
QH)H =

(
HH

4 ·HH
3 ·HH

2 ·HH
1
)H

(15.120)
Q = H1 ·H2 ·H3 ·H4 (15.121)

The eqn. (15.119)-(15.121) are necessary to be mentioned only in case Q is not Hermitian, but still unitary.
Otherwise there is no difference computing Q or QH using the Householder vectors. No care must be taken
in choosing forward or backward accumulation.

General case In the general case it is necessary to find an elementary unitary matrix

H = I− τ ·u ·uH (15.122)

that satisfies the following three conditions.

|τ|2 ·uH ·u = τ+ τ
∗ = 2 ·Re{τ} , HH ·x = γ ·‖x‖·~e1 , |γ|= 1 (15.123)

When choosing the elements uii = 1 it is possible the store the Householder vectors as well as the upper
triangular matrix R in the same storage of the matrix A. The Householder matrices Hi can be completely
restored from the Householder vectors.

A =


β1 a12 a13 a14
u21 β2 a23 a24
u31 u32 β3 a34
u41 u42 u43 β4

 (15.124)

There exist several approaches to meet the conditions expressed in eq. (15.123). For fewer computational
effort it may be convenient to choose γ to be real valued. With the notation

HH ·x = HH ·


α

x2
x3
x4

=


β

0
0
0

 (15.125)

one possibility is to define the following calculation rules.

ν = sign(Re{α}) ·‖x‖ (15.126)

τ =
α+ν

ν
(15.127)

γ =−1 (15.128)
β = γ ·‖x‖=−‖x‖ → real valued (15.129)

u =
x+ν ·~e1

α+ν
→ uii = 1 (15.130)

These definitions yield a complex τ, thus H is no more Hermitian but still unitary.

H = I− τ ·u ·uH → HH = I− τ
∗ ·u ·uH (15.131)
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Givens rotation

A Givens rotation is a plane rotation matrix. Such a plane rotation matrix is an orthogonal matrix that is
different from the identity matrix only in four elements.

M =



1 0 · · · · · · 0

0
. . .

...
... 1

+c 0 · · · 0 +s
0 1 0
...

. . .
...

0 1 0
−s 0 · · · 0 +c

1
...

...
. . . 0

0 · · · · · · 0 1



(15.132)

The elements are usually chosen so that

R =
[

c s
−s c

]
c = cosθ, s = sinθ → |c|2 + |s|2 = 1 (15.133)

The most common use of such a plane rotation is to choose c and s such that for a given a and b

R =
[

c s
−s c

]
·
[

a
b

]
=
[

d
0

]
(15.134)

multiplication annihilates the lower vector entry. In such an application the matrix R is often termed
“Givens rotation” matrix. The following equations satisfy eq. (15.134) for a given a and b exploiting the
conditions given in eq. (15.133).

c =
±a√
|a|2 + |b|2

and s =
±b√
|a|2 + |b|2

(15.135)

d =
√
|a|2 + |b|2 (15.136)

Eigenvalues of a 2-by-2 matrix

The eigenvalues of a 2-by-2 matrix

A =
[

a b
c d

]
(15.137)

can be obtained directly from the quadratic formula. The characteristic polynomial is

det (A−µI) = det
[

a−µ b
c d−µ

]
= (a−µ) · (d−µ)−bc

0 = µ2− (a+d) ·µ+(ad−bc)
(15.138)

The polynomial yields the two eigenvalues.

µ1,2 =
a+d

2
±

√(
a+d

2

)2

+bc−ad (15.139)

For a symmetric matrix A (i.e. b = c) eq.(15.139) can be rewritten to:

µ1,2 = e+d±
√

e2 +b2 with e =
a−d

2
(15.140)
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Step 1: Bidiagonalization

In the first step the original matrix A is bidiagonalized by the application of Householder reflections from
the left and right hand side. The matrices UH

B and VB can each be determined as a product of Householder
matrices.

UH (n)
B · . . . ·UH (1)

B︸ ︷︷ ︸
UH

B

·A ·V (1)
B · . . . ·V

(n−2)
B︸ ︷︷ ︸

VB

= UH
B ·A ·VB = B(0) (15.141)

Each of the required Householder vectors are created and applied as previously defined. Suppose a n× n
matrix, then applying the first Householder vector from the left hand side eliminates the first column and
yields

UH (1)
B ·A =


β1 a(1)

12 a(1)
13 · · · a(1)

1n

u21 a(1)
22 a(1)

23 a(1)
2n

u31 a(1)
32 a(1)

33 a(1)
3n

...
. . .

...
un1 a(1)

n2 a(1)
n3 · · · a(1)

nn

 (15.142)

Next, a Householder vector is applied from the right hand side to annihilate the first row.

UH (1)
B ·A ·V (1)

B =



β1 δ2 v13 · · · v1n

u21 a(2)
22 a(2)

23 a(2)
2n

u31 a(2)
32 a(2)

33 a(2)
3n

...
. . .

...
un1 a(2)

n2 a(2)
n3 · · · a(2)

nn

 (15.143)

Again, a Householder vector is applied from the left hand side to annihilate the second column.

UH (2)
B ·UH (1)

B ·A ·V (1)
B =



β1 δ2 v13 · · · v1n

u21 β2 a(3)
23 a(3)

2n

u31 u32 a(3)
33 a(3)

3n
...

...
. . .

...
un1 un2 a(3)

n3 · · · a(3)
nn

 (15.144)

This process is continued until

UH
B ·A ·VB =


β1 δ2 v13 · · · v1n
u21 β2 δ3 v2n

u31 u32
. . . . . .

...
... βn−1 δn

un1 un2 un3 βn

 (15.145)

For each of the Householder transformations from the left and right hand side the appropriate τ values must
be stored in separate vectors.

Step 2: Matrix reconstructions

Using the Householder vectors stored in place of the original A matrix and the appropriate τ value vectors
it is now necessary to unpack the UB and V H

B matrices. The diagonal vector β and the super-diagonal vector
δ can be saved in separate vectors previously. Thus the UB matrix can be unpacked in place of the A matrix
and the V H

B matrix is unpacked in a separate matrix.
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There are two possible algorithms for computing the Householder product matrices, i.e. forward accumu-
lation and backward accumulation. Both start with the identity matrix which is successively multiplied by
the Householder matrices either from the left or right.

UH
B = HH

Un · . . . ·HH
U2 ·HH

U1 · I (15.146)
→ UB = I ·HUn · . . . ·HU2 ·HU1 (15.147)

Recall that the leading portion of each Householder matrix is the identity except the first. Thus, at the
beginning of backward accumulation, UB is “mostly the identity” and it gradually becomes full as the
iteration progresses. This pattern can be exploited to reduce the number of required flops. In contrast, UH

B
is full in forward accumulation after the first step. For this reason, backward accumulation is cheaper and
the strategy of choice. When unpacking the UB matrix in place of the original A matrix it is necessary to
choose backward accumulation anyway.

VB = I ·HH
V 1 ·HH

V 2 · . . . ·HH
V n (15.148)

→ V H
B = I ·HV n · . . . ·HV 2 ·HV 1 (15.149)

Unpacking the V H
B matrix is done in a similar way also performing successive Householder matrix multi-

plications using backward accumulation.

Step 3: Diagonalization – shifted QR iteration

At this stage the matrices UB and V H
B exist in unfactored form. Also there are the diagonal vector β and the

super-diagonal vector δ. Both vectors are real valued. Thus the following algorithm can be applied even
though solving a complex equation system.

B(0) =


β1 δ2 0 · · · 0
0 β2 δ3 0 0
... 0

. . . . . . 0
0 0 0 βn−1 δn
0 0 0 0 βn

 (15.150)

The remaining problem is thus to compute the SVD of the matrix B. This is done applying an implicit-shift
QR step to the tridiagonal matrix T = BT B which is a symmetric. The matrix T is not explicitly formed
that is why a QR iteration with implicit shifts is applied.

After bidiagonalization we have a bidiagonal matrix B(0):

B(0) = UH
B ·A ·VB (15.151)

The presented method turns B(k) into a matrix B(k+1) by applying a set of orthogonal transforms

B(k+1) = ŨH ·B(k) ·Ṽ (15.152)

The orthogonal matrices Ũ and Ṽ are chosen so that B(k+1) is also a bidiagonal matrix, but with the super-
diagonal elements smaller than those of B(k). The eq.(15.152) is repeated until the non-diagonal elements
of B(k+1) become smaller than ε and can be disregarded.

The matrices Ũ and Ṽ are constructed as

Ũ = Ũ1 ·Ũ2 ·Ũ3 · . . . ·Ũn−1 (15.153)

and similarly Ṽ where Ṽi and Ũi are matrices of simple rotations as given in eq.(15.132). Both Ṽ and Ũ are
products of Givens rotations and thus perform orthogonal transforms.
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Single shifted QR step. The left multiplication of B(k) by ŨH
i replaces two rows of B(k) by their linear

combinations. The rest of B(k) is unaffected. Right multiplication of B(k) by Ṽi similarly changes only two
columns of B(k).

A matrix Ṽ1 is chosen the way that
B(k)

1 = B(k)
0 ·Ṽ1 (15.154)

is a QR transform with a shift. Note that multiplying B(k) by Ṽ1 gives rise to a non-zero element which is
below the main diagonal.

B(k)
0 ·Ṽ1 =



× × 0 0 0 0
⊗ × × 0 0 0
0 0 × × 0 0
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×

 (15.155)

A new rotation angle is then chosen so that multiplication by ŨH
1 gets rid of that element. But this will

create a non-zero element which is right beside the super-diagonal.

ŨH
1 ·B

(k)
1 =


× × ⊗ 0 0 0
0 × × 0 0 0
0 0 × × 0 0
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×

 (15.156)

Then Ṽ2 is made to make it disappear, but this leads to another non-zero element below the diagonal, etc.

B(k)
2 ·Ṽ2 =



× × 0 0 0 0
0 × × 0 0 0
0 ⊗ × × 0 0
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×

 (15.157)

In the end, the matrix ŨHBṼ becomes bidiagonal again. However, because of a special choice of Ṽ1 (QR
algorithm), its non-diagonal elements are smaller than those of B.

Please note that each of the transforms must also be applied to the unfactored UH
B and VB matrices which

turns them successively into UH and V

Computation of the Wilkinson shift. For a single QR step the computation of the eigenvalue µ of the
trailing 2-by-2 submatrix of Tn = BT

n ·Bn that is closer to the t22 matrix element is required.

Tn =
[

t11 t12
t21 t22

]
= BT

n ·Bn =
[

δn−1 βn−1 0
0 δn βn

]
·

δn−1 0
βn−1 δn

0 βn

 (15.158)

=
[

β2
n−1 +δ2

n−1 δn ·βn−1
δn ·βn−1 β2

n +δ2
n

]
(15.159)

The required eigenvalue is called Wilkinson shift, see eq.(15.140) for details. The sign for the eigenvalue
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is chosen such that it is closer to t22.

µ = t22 +d− sign(d) ·
√

d2 + t2
12 (15.160)

= t22 +d− t12 ·sign
(

d
t12

)
·

√(
d

t12

)2

+1 (15.161)

= t22−
t2
12

d + t12 ·sign
(

d
t12

)
·

√(
d

t12

)2

+1

(15.162)

whereas
d =

t11− t22

2
(15.163)

The Givens rotation Ṽ1 is chosen such that[
c1 s1
−s1 c1

]T

·
[
(β2

1−µ)/β1
δ2

]
=
[
×
0

]
(15.164)

The special choice of this first rotation in the single QR step ensures that the super-diagonal matrix entries
get smaller. Typically, after a few of these QR steps, the super-diagonal entry δn becomes negligible.

Zeros on the diagonal or super-diagonal. The QR iteration described above claims to hold if the under-
lying bidiagonal matrix is unreduced, i.e. has no zeros neither on the diagonal nor on the super-diagonal.

When there is a zero along the diagonal, then premultiplication by a sequence of Givens transformations
can zero the right-hand super-diagonal entry as well. The inverse rotations must be applied to the UH

B
matrix.

B =


× × 0 0 0 0
0 × × 0 0 0
0 0 0 × 0 0
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×

 →


× × 0 0 0 0
0 × × 0 0 0
0 0 0 0 ⊗ 0
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×



→


× × 0 0 0 0
0 × × 0 0 0
0 0 0 0 0 ⊗
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×

 →


× × 0 0 0 0
0 × × 0 0 0
0 0 0 0 0 0
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×


Thus the problem can be decoupled into two smaller matrices B1 and B2. The diagonal matrix B3 is
successively getting larger for each super-diagonal entry being neglected after the QR iterations.B1 0 0

0 B2 0
0 0 B3

 (15.165)

Matrix B2 has non-zero super-diagonal entries. If there is any zero diagonal entry in B2, then the super-
diagonal entry can be annihilated as just described. Otherwise the QR iteration algorithm can be applied to
B2.

When there are only B3 matrix entries left (diagonal entries only) the algorithm is finished, then the B
matrix has been transformed into the singular value matrix Σ.
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Step 4: Solving the equation system

It is straight-forward to solve a given equation system once having the singular value decomposition com-
puted.

A ·x = z (15.166)

UΣV H ·x = z (15.167)

ΣV H ·x = UH ·z (15.168)

V H ·x = Σ
−1UH ·z (15.169)

x = V Σ
−1UH ·z (15.170)

The inverse of the diagonal matrix Σ yields

Σ
−1 =


1/σ1 0 · · · 0

0 1/σ2 · · · 0
...

...
. . .

...
0 0 · · · 1/σn

 (15.171)

With vi being the i-th row of the matrix V , ui the i-th column of the matrix U and σi the i-th singular value
eq. (15.170) can be rewritten to

x =
n

∑
i=1

uH
i ·z
σi
·vi (15.172)

It must be mentioned that very small singular values σi corrupt the complete result. Such values indicate
(nearly) singular (ill-conditioned) matrices A. In such cases, the solution vector x obtained by zeroing the
small σi’s and then using equation (15.170) is better than direct-method solutions (such as LU decompo-
sition or Gaussian elimination) and the SVD solution where the small σi’s are left non-zero. It may seem
paradoxical that this can be so, since zeroing a singular value corresponds to throwing away one linear
combination of the set of equations that is going to be solved. The resolution of the paradox is that a
combination of equations that is so corrupted by roundoff error is thrown away precisely as to be at best
useless; usually it is worse than useless since it ”pulls” the solution vector way off towards infinity along
some direction that is almost a nullspace vector.

15.2.7 Jacobi method
This method quite simply involves rearranging each equation to make each variable a function of the other
variables. Then make an initial guess for each solution and iterate. For this method it is necessary to ensure
that all the diagonal matrix elements aii are non-zero. This is given for the nodal analysis and almostly
given for the modified nodal analysis. If the linear equation system is solvable this can always be achieved
by rows substitutions.

The algorithm for performing the iteration step k +1 writes as follows.

x(k+1)
i =

1
aii

(
zi−

i−1

∑
j=1

ai jx
(k)
j −

n

∑
j=i+1

ai jx
(k)
j

)
for i = 1, . . . ,n (15.173)

This has to repeated until the new solution vectors x(k+1) deviation from the previous one x(k) is sufficiently
small.

The initial guess has no effect on whether the iterative method converges or not, but with a good initial
guess (as possibly given in consecutive Newton-Raphson iterations) it converges faster (if it converges). To
ensure convergence the condition

n

∑
j=1, j 6=i

∣∣ai j
∣∣≤ |aii| for i = 1, . . . ,n (15.174)
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and at least one case
n

∑
i=1,i6= j

∣∣ai j
∣∣≤ |aii| (15.175)

must apply. If these conditions are not met, the iterative equations may still converge. If these conditions
are met the iterative equations will definitely converge.

Another simple approach to a convergence criteria for iterative algorithms is the Schmidt and v. Mises
criteria. √√√√ n

∑
i=1

n

∑
j=1, j 6=i

∣∣∣∣ai j

aii

∣∣∣∣2 < 1 (15.176)

15.2.8 Gauss-Seidel method
The Gauss-Seidel algorithm is a modification of the Jacobi method. It uses the previously computed values
in the solution vector of the same iteration step. That is why this iterative method is expected to converge
faster than the Jacobi method.

The slightly modified algorithm for performing the k +1 iteration step writes as follows.

x(k+1)
i =

1
aii

(
zi−

i−1

∑
j=1

ai jx
(k+1)
j −

n

∑
j=i+1

ai jx
(k)
j

)
for i = 1, . . . ,n (15.177)

The remarks about the initial guess x(0) as well as the convergence criteria noted in the section about the
Jacobi method apply to the Gauss-Seidel algorithm as well.

15.2.9 A comparison
There are direct and iterative methods (algorithms) for solving linear equation systems. Equation systems
with large and sparse matrices should rather be solved with iterative methods.

method precision application programming
effort

computing
complexity

notes

Laplace
expansion

numerical
errors

general straight
forward

n! very time consuming

Gaussian
elimination

numerical
errors

general intermediate n3/3+n2/2

Gauss-Jordan numerical
errors

general intermediate n3/3+n2−
n/3

computes the inverse
besides

LU
decomposition

numerical
errors

general intermediate n3/3+n2−
n/3

useful for
consecutive

solutions
QR
decomposition

good general high 2n3 +3n3

Singular value
decomposition

good general very high 2n3 +4n3 ill-conditioned
matrices can be

handled
Jacobi very good diagonally

dominant
systems

easy n2 in each
iteration

step

possibly no
convergence

Gauss-Seidel very good diagonally
dominant

systems

easy n2 in each
iteration

step

possibly no
convergence
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15.3 Polynomial approximations

15.3.1 Cubic splines

15.4 Frequency-Time Domain Transformation
Any signal can completely be described in time or in frequency domain. As both representations are equiv-
alent, it is possible to transform them into each other. This is done by the so-called Fourier Transformation
and the inverse Fourier Transformation, respectively:

Fourier Transformation: U( jω) =
∞Z
−∞

u(t) ·e− jω· t dt (15.178)

inverse Fourier Transformation: u(t) =
1

2π
·

∞Z
−∞

U( jω) ·e jω· t dω (15.179)

In digital systems the data u(t) or U( jω), respectively, consists of a finite number N of samples uk and Un.
This leads to the discrete Fourier Transformation (DFT) and its inverse operation (IDFT):

DFT: Un =
N−1

∑
k=0

uk · exp
(
− j ·n2π ·k

N

)
(15.180)

IDFT: uk =
1
N
·

N

∑
n=0

Un · exp
(

j ·k 2π ·n
N

)
(15.181)

The absolute time and frequency values do not appear anymore in the DFT. They depend on the sample
frequency fT and the number of samples N.

∆ f =
1

N ·∆t
=

fT

N
(15.182)

Where ∆t is distance between time samples and ∆ f distance between frequency samples.

With DFT the N time samples are transformed into N frequency samples. This also holds if the time
data are real numbers, as is always the case in ”real life”: The complex frequency samples are conjugate
complex symmetrical and so equalizing the score:

UN−n = U∗n (15.183)

That is, knowing the input data has no imaginary part, only half of the Fourier data must be computed.

15.4.1 Fast Fourier Transformation
As can be seen in equation 15.180 the computing time of the DFT rises with N2. This is really huge, so it
is very important to reduce the time consumption. Using a strongly optimized algorithm, the so-called Fast
Fourier Transformation (FFT), the DFT is reduced to an N · log2 N time rise. The following information
stems from [61], where the theoretical background is explained comprehensively.

The fundamental trick of the FFT is to cut the DFT into two parts, one with data having even indices and
the other with odd indices:
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Un =
N−1

∑
k=0

uk · exp
(
− j ·n2π ·k

N

)
(15.184)

=
N/2−1

∑
k=0

u2k · exp
(
− j ·n2π ·2k

N

)
+

N/2−1

∑
k=0

u2k+1 · exp
(
− j ·n2π ·(2k +1)

N

)
(15.185)

=
N/2−1

∑
k=0

u2k · exp
(
− j ·n2π ·k

N/2

)
︸ ︷︷ ︸

Feven

+Wn,N ·
N/2−1

∑
k=0

u2k+1 · exp
(
− j ·n2π ·k

N/2

)
︸ ︷︷ ︸

Fodd

(15.186)

with Wn,N = exp
(

2π · j · n
N

)
(so-called ’twiddle factor’) (15.187)

The new formula shows no speed advantages. The important thing is that the even as well as the odd part
each is again a Fourier series. Thus the same procedure can be repeated again and again until the equation
consists of N terms. Then, each term contains only one data uk with factor e0 = 1. This works if the
number of data is a power of two (2, 4, 8, 16, 32, ...). So finally, the FFT method performs log2 N times the
operation

uk1,even +Wn,x ·uk2,odd (15.188)

to get one data of Un. This is called the Danielson-Lanzcos algorithm. The question now arises which data
values of uk needs to be combined according to equation (15.188). The answer is quite easy. The data array
must be reordered by the bit-reversal method. This means the value at index k1 is swapped with the value
at index k2 where k2 is obtained by mirroring the binary number k1, i.e. the most significant bit becomes
the least significant one and so on. Example for N = 8:

000 ↔ 000 011 ↔ 110 110 ↔ 011
001 ↔ 100 100 ↔ 001 111 ↔ 111
010 ↔ 010 101 ↔ 101

Having this new indexing, the values to combine according to equation 15.188 are the adjacent values. So,
performing the Danielson-Lanzcos algorithm has now become very easy.

Figure 15.4 illustrates the whole FFT algorithm starting with the input data uk and ending with one value
of the output data Un.

Figure 15.4: principle of a FFT with data length 8
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This scheme alone gives no advantage. But it can compute all output values within, i.e. no temporary
memory is needed and the periodicity of Wn,N is best exploited. To understand this, let’s have a look on the
first Danielson-Lanczos step in figure 15.4. The four multiplications and additions have to be performed
for each output value (here 8 times!). But indeed this is not true, because Wn,2 is 2-periodical in n and
furthermore Wn,2 =−Wn+1,2. So now, u0 +W0,2 ·u4 replaces the old u0 value and u0−W0,2 ·u4 replaces the
old u4 value. Doing this for all values, four multiplications and eight additions were performed in order to
calculate the first Danielson-Lanczos step for all (!!!) output values. This goes on, as Wn,4 is 4-periodical in
n and Wn,4 =−Wn+2,4. So this time, two loop iterations (for Wn,4 and for Wn+1,4) are necessary to compute
the current Danielson-Lanczos step for all output values. This concept continues until the last step.

Finally, a complete FFT source code in C should be presented. The original version was taken from [61]. It
is a radix-2 algorithm, known as the Cooley-Tukey Algorithm. Here, several changes were made that gain
about 10% speed improvement.

Listing 15.1: 1D-FFT algorithm in C

1 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 / / Parame ter s :
3 / / num − number o f complex samples
4 / / da ta [ ] − a r r a y c o n t a i n i n g t h e da ta samples , r e a l and i m a g i n a r y
5 / / p a r t i n a l t e r n a t i n g o r d e r ( l e n g t h : 2∗num )
6 / / i s i g n − i s 1 t o c a l c u l a t e FFT and −1 t o c a l c u l a t e i n v e r s e FFT
7 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
8
9 # d e f i n e SWAP( a , b ) { wr = a ; a = b ; b = wr ; }

10
11 void f f t r a d i x 2 ( i n t num , double ∗ da ta , i n t i s i g n )
12 {
13 double wt , t h e t a , wr , wi , wpr , wpi , tempi , tempr ;
14 i n t i , j , m, n ;
15 n = 2∗num ;
16 j = 0 ;
17
18 / / b i t r e v e r s a l method
19 / / 1 ) i n d e x 0 need n o t t o be swapped
20 / / −> s t a r t a t i =2
21 / / 2 ) swap scheme i s s y m m e t r i c a l
22 / / −> swap f i r s t and second h a l f i n one i t e r a t i o n
23 f o r ( i =2 ; i<num ; i +=2) {
24 m = num ;
25 whi le ( j >= m) { / / c a l c u l a t e swap i n d e x
26 j −= m;
27 m >>= 1 ;
28 }
29 j += m;
30
31 i f ( j > i ) { / / was i n d e x a l r e a d y swapped ?
32 SWAP( d a t a [ j ] , d a t a [ i ] ) ; / / swap r e a l p a r t
33 SWAP( d a t a [ j +1 ] , d a t a [ i + 1 ] ) ; / / swap i m a g i n a r y p a r t
34
35 i f ( j < num ) { / / swap second h a l f ?
36 SWAP ( d a t a [ n−j −2] , d a t a [ n−i −2 ] ) ; / / swap r e a l p a r t
37 SWAP ( d a t a [ n−j −1] , d a t a [ n−i −1 ] ) ; / / swap i m a g i n a r y p a r t
38 }
39 }
40 }
41
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42 / / Dan ie l son−Lanzcos a l g o r i t h m
43 i n t mmax , i s t e p ;
44 mmax = 2 ;
45 whi le ( n > mmax) { / / each Danie l son−Lanzcos s t e p
46 i s t e p = mmax << 1 ;
47 t h e t a = i s i g n ∗ ( 2 . 0 ∗ PI / mmax ) ;
48 wpr = cos ( t h e t a ) ;
49 wpi = s i n ( t h e t a ) ;
50 wr = 1 . 0 ;
51 wi = 0 . 0 ;
52 f o r (m=1; m<mmax ; m+=2) {
53 f o r ( i =m; i <=n ; i += i s t e p ) {
54 j = i +mmax ;
55 tempr = wr∗ d a t a [ j −1] + wi∗ d a t a [ j ] ;
56 tempi = wr∗ d a t a [ j ] − wi∗ d a t a [ j −1];
57 d a t a [ j −1] = d a t a [ i −1] − t empr ;
58 d a t a [ j ] = d a t a [ i ] − t empi ;
59 d a t a [ i −1] += tempr ;
60 d a t a [ i ] += tempi ;
61 }
62 wt = wr ;
63 wr = wt∗wpr − wi∗wpi ;
64 wi = wi∗wpr + wt∗wpi ;
65 }
66 mmax = i s t e p ;
67 }
68
69 i f ( i s t e p == −1) / / pe r fo rm i n v e r s e FFT ?
70 f o r ( i =0 ; i<num ; i ++)
71 d a t a [ i ] /= num ; / / n o r m a l i z e r e s u l t
72 }

There are many other FFT algorithms mainly aiming at higher speed (radix-8 FFT, split-radix FFT, Wino-
grad FFT). These algorithms are much more complex, but on modern processors with numerical co-
processors they gain no or hardly no speed advantage, because the reduced FLOPS are equalled by the
far more complex indexing.

15.4.2 Real-Valued FFT
All physical systems are real-valued in time domain. As already mentioned above, this fact leads to a sym-
metry in frequency domain, which can be exploited to save 50% memory usage and about 30% computation
time. Rewriting the C listing from above to a real-valued FFT routine creates the following function. As
this scheme is not symmetric anymore, an extra procedure for the inverse transformation is needed. It is
also depicted below.

Listing 15.2: real-valued FFT algorithm in C

1 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 / / Parame ter s :
3 / / num − number o f r e a l−v a l u e d samples
4 / / da ta [ ] − a r r a y c o n t a i n i n g t h e da ta samples ( l e n g t h : num )
5 / /
6 / / Ou tpu t :
7 / / da ta [ ] − r ( 0 ) , r ( 1 ) , i ( 1 ) , . . . . , r (N/2−1) , i (N/2−1) , r (N / 2 )
8 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
9

10 # d e f i n e SWAP( a , b ) { wr = a ; a = b ; b = wr ; }
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11
12 void r e a l f f t r a d i x 2 ( i n t num , double ∗ d a t a )
13 {
14 i n t i , j , k , l , n1 = num >> 1 , n2 = 1 ;
15 double t1 , t2 , t3 , wr , wi , wpr , wpi ;
16
17 / / b i t r e v e r s a l method
18 / / 1 ) i n d e x 0 need n o t t o be swapped
19 / / −> s t a r t a t i =1
20 / / 2 ) swap scheme i s s y m m e t r i c a l
21 / / −> swap f i r s t and second h a l f i n one i t e r a t i o n
22 j = 0 ;
23 f o r ( i =1 ; i<n1 ; i ++) {
24 k = n1 ;
25 whi le ( j >= k ) { / / c a l c u l a t e swap i n d e x
26 j −= k ;
27 k >>= 1 ;
28 }
29 j += k ;
30
31 i f ( j > i ) { / / was i n d e x a l r e a d y swapped ?
32 SWAP( d a t a [ j ] , d a t a [ i ] ) ;
33
34 i f ( j < n1 ) / / swap second h a l f ?
35 SWAP ( d a t a [ num−j −1] , d a t a [ num−i −1 ] ) ;
36 }
37 }
38
39 / / l e n g t h two b u t t e r f l i e s
40 f o r ( i =0 ; i<num ; i +=2) {
41 t 1 = d a t a [ i + 1 ] ;
42 d a t a [ i +1] = d a t a [ i ] − t 1 ;
43 d a t a [ i ] += t 1 ;
44 }
45
46 whi le ( n1 < num ) {
47 n2 <<= 1 ; / / h a l f a b u t t e r f l y
48 n1 = n2 << 1 ; / / l e n g t h o f a b u t t e r f l y
49
50 f o r ( i =0 ; i<num ; i +=n1 ) {
51 t 1 = d a t a [ i +n2 ] ;
52 d a t a [ i +n2 ] = −d a t a [ i +n1−1];
53 d a t a [ i +n1−1] = d a t a [ i ] − t 1 ;
54 d a t a [ i ] += t 1 ;
55 }
56
57 t 1 = 2 . 0∗M PI / ( ( double ) n1 ) ;
58 wpr = cos ( t 1 ) ; / / r e a l p a r t o f t w i d d l e f a c t o r
59 wpi = s i n ( t 1 ) ; / / i m a g i n a r y p a r t o f t w i d d l e f a c t o r
60 wr = 1 . 0 ; / / s t a r t o f t w i d d l e f a c t o r
61 wi = 0 . 0 ;
62
63 f o r ( j =3 ; j<n2 ; j +=2) { / / a l l complex l i n e s o f a b u t t e r f l y
64 t 1 = wr ;
65 wr = t 1 ∗wpr − wi∗wpi ; / / c a l c u l a t e n e x t t w i d d l e f a c t o r
66 wi = wi∗wpr + t 1 ∗wpi ;
67
68 f o r ( i =0 ; i<num ; i +=n1 ) { / / t h r o u g h a l l b u t t e r f l i e s
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69 k = i + j − 2 ;
70 l = i + n1 − j ;
71 t 1 = d a t a [ l ]∗wr + d a t a [ l +1]∗wi ;
72 t 3 = d a t a [ k + 1 ] ;
73 t 2 = d a t a [ l +1]∗wr − d a t a [ l ]∗wi ;
74 d a t a [ l ] = d a t a [ k ] ;
75
76 i f ( ( i & n1 ) != 0 ) { / / i n d e x swap ?
77 t 1 = −t 1 ;
78 t 3 = −t 3 ;
79 }
80
81 d a t a [ k ] += t 1 ;
82 d a t a [ k +1] = t 2 + t 3 ;
83 d a t a [ l ] −= t 1 ;
84 d a t a [ l +1] = t 2 − t 3 ;
85 }
86 }
87 }
88 }

Listing 15.3: real-valued inverse FFT algorithm in C
1 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 / / Parame ter s :
3 / / num − c o u n t o f numbers i n da ta
4 / / da ta [ ] − r ( 0 ) , r ( 1 ) , i ( 1 ) , . . . . , r (N/2−1) , i (N/2−1) , r (N / 2 )
5 / /
6 / / Ou tpu t :
7 / / da ta [ ] − a r r a y c o n t a i n i n g t h e da ta samples ( l e n g t h : num )
8 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
9

10 # d e f i n e SWAP( a , b ) { wr = a ; a = b ; b = wr ; }
11
12 void r e a l i f f t o r d e r s p e e d ( i n t num , double ∗ d a t a )
13 {
14 i n t i , j , k , l , n1 , n2 = num ;
15 double t1 , t2 , t3 , wr , wi , wpr , wpi ;
16
17 whi le ( n2 > 2) {
18 n1 = n2 ; / / l e n g t h o f a b u t t e r f l y
19 n2 >>= 1 ; / / h a l f a b u t t e r f l y
20
21 f o r ( i =0 ; i<num ; i +=n1 ) { / / t h r o u g h a l l b u t t e r f l i e s
22 t 1 = d a t a [ i +n1−1];
23 d a t a [ i +n1−1] = −2.0 ∗ d a t a [ i +n2 ] ;
24 d a t a [ i +n2−1] ∗= 2 . 0 ;
25 d a t a [ i +n2 ] = d a t a [ i ] − t 1 ;
26 d a t a [ i ] += t 1 ;
27 }
28
29 t 1 = 2 . 0∗M PI / ( ( double ) n1 ) ;
30 wpr = cos ( t 1 ) ; / / r e a l p a r t o f t w i d d l e f a c t o r
31 wpi = s i n ( t 1 ) ; / / i m a g i n a r y p a r t o f t w i d d l e f a c t o r
32 wr = 1 . 0 ; / / s t a r t o f t w i d d l e f a c t o r
33 wi = 0 . 0 ;
34
35 f o r ( j =3 ; j<n2 ; j +=2) { / / a l l complex l i n e s o f a b u t t e r f l y
36 t 1 = wr ;
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37 wr = t 1 ∗wpr + wi∗wpi ; / / c a l c u l a t e n e x t t w i d d l e f a c t o r
38 wi = wi∗wpr − t 1 ∗wpi ;
39
40 f o r ( i =0 ; i<num ; i +=n1 ) { / / t h r o u g h a l l b u t t e r f l i e s
41 k = i + j − 2 ;
42 l = i + n1 − j ;
43 t 1 = d a t a [ l ] − d a t a [ k ] ;
44 t 2 = d a t a [ l +1] + d a t a [ k + 1 ] ;
45 t 3 = d a t a [ k +1] − d a t a [ l + 1 ] ;
46 d a t a [ k ] += d a t a [ l ] ;
47
48 i f ( ( i & n1 ) != 0 ) {
49 t 1 = −t 1 ;
50 t 3 = −t 3 ;
51 }
52
53 d a t a [ k +1] = t 3 ;
54 d a t a [ l ] = t 2 ∗wi − t 1 ∗wr ;
55 d a t a [ l +1] = t 2 ∗wr + t 1 ∗wi ;
56 }
57 }
58 }
59
60 / / l e n g t h two b u t t e r f l i e s
61 f o r ( i =0 ; i<num ; i +=2) {
62 t 1 = d a t a [ i + 1 ] ;
63 d a t a [ i +1] = ( d a t a [ i ] − t 1 ) / num ;
64 d a t a [ i ] = ( d a t a [ i ] + t 1 ) / num ;
65 }
66
67 / / b i t r e v e r s a l method
68 / / 1 ) i n d e x 0 need n o t t o be swapped
69 / / −> s t a r t a t i =1
70 / / 2 ) swap scheme i s s y m m e t r i c a l
71 / / −> swap f i r s t and second h a l f i n one i t e r a t i o n
72 j = 0 ;
73 n1 = num >> 1 ;
74 f o r ( i =1 ; i<n1 ; i ++) {
75 k = n1 ;
76 whi le ( j >= k ) { / / c a l c u l a t e swap i n d e x
77 j −= k ;
78 k >>= 1 ;
79 }
80 j += k ;
81
82 i f ( j > i ) { / / was i n d e x a l r e a d y swapped ?
83 SWAP( d a t a [ j ] , d a t a [ i ] ) ;
84
85 i f ( j < n1 ) / / swap second h a l f ?
86 SWAP ( d a t a [ num−j −1] , d a t a [ num−i −1 ] ) ;
87 }
88 }
89 }
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15.4.3 More-Dimensional FFT
A standard Fourier Transformation is not useful in harmonic balance methods, because with multi-tone ex-
citation many mixing products appear. The best way to cope with this problem is to use multi-dimensional
FFT.

Fourier Transformations in more than one dimension soon become very time consuming. Using FFT
mechanisms is therefore mandatory. A more-dimensional Fourier Transformation consists of many one-
dimensional Fourier Transformations (1D-FFT). First, 1D-FFTs are performed for the data of the first
dimension at every index of the second dimension. The results are used as input data for the second
dimension that is performed the same way with respect to the third dimension. This procedure is continued
until all dimensions are calculated. The following equations shows this for two dimensions.

Un1,n2 =
N2−1

∑
k2=0

N1−1

∑
k1=0

uk1,k2 · exp
(
− j ·n1

2π ·k1

N1

)
· exp

(
− j ·n2

2π ·k2

N2

)
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=
N2−1

∑
k2=0

exp
(
− j ·n2

2π ·k2

N2

)
·

N1−1

∑
k1=0

uk1,k2 · exp
(
− j ·n1

2π ·k1

N1

)
︸ ︷︷ ︸

1D-FFT

(15.190)

Finally, a complete n-dimensional FFT source code should be presented. It was taken from [61] and
somewhat speed improved.

Parameters:
ndim - number of dimensions
num[] - array containing the number of complex samples for every dimension
data[] - array containing the data samples,

real and imaginary part in alternating order (length: 2*sum of num[]),
going through the array, the first dimension changes least rapidly !
all subscripts range from 1 to maximum value !

isign - is 1 to calculate FFT and -1 to calculate inverse FFT

Listing 15.4: multidimensional FFT algorithm in C

1 i n t idim , i1 , i2 , i3 , i 2 r e v , i 3 r e v , ip1 , ip2 , ip3 , i f p 1 , i f p 2 ;
2 i n t i b i t , k1 , k2 , n , nprev , nrem , n t o t ;
3 double tempi , tempr , wt , t h e t a , wr , wi , wpi , wpr ;
4
5 n t o t = 1 ;
6 f o r ( id im =0; idim<ndim ; id im ++) / / compute t o t a l number o f complex v a l u e s
7 n t o t ∗= num [ id im ] ;
8
9 nprev = 1 ;

10 f o r ( id im =ndim−1; idim >=0; idim−−) { / / main loop over t h e d i m e n s i o n s
11 n = num [ id im ] ;
12 nrem = n t o t / ( n∗ nprev ) ;
13 i p 1 = nprev << 1 ;
14 i p 2 = i p 1 ∗n ;
15 i p 3 = i p 2 ∗nrem ;
16 i 2 r e v = 1 ;
17
18 f o r ( i 2 =1; i2 <=i p 2 ; i 2 += i p 1 ) { / / b i t−r e v e r s a l method
19 i f ( i 2 < i 2 r e v ) {
20 f o r ( i 1 = i 2 ; i1 <=i 2 + ip1 −2; i 1 +=2) {
21 f o r ( i 3 = i 1 ; i3 <=i p 3 ; i 3 += i p 2 ) {
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22 i 3 r e v = i 2 r e v + i3−i 2 ;
23 SWAP( d a t a [ i3 −1] , d a t a [ i 3 r e v −1 ] ) ;
24 SWAP( d a t a [ i 3 ] , d a t a [ i 3 r e v ] ) ;
25 }
26 }
27 }
28 i b i t = i p 2 >> 1 ;
29 whi le ( i b i t >= i p 1 && i 2 r e v > i b i t ) {
30 i 2 r e v −= i b i t ;
31 i b i t >>= 1 ;
32 }
33 i 2 r e v += i b i t ;
34 }
35
36 i f p 1 = i p 1 ;
37 whi le ( i f p 1 < i p 2 ) { / / Dan ie l son−Lanzcos a l g o r i t h m
38 i f p 2 = i f p 1 << 1 ;
39 t h e t a = i s i g n ∗2∗ p i / ( i f p 2 / i p 1 ) ;
40 wpr = cos ( t h e t a ) ;
41 wpi = s i n ( t h e t a ) ;
42 wr = 1 . 0 ; wi = 0 . 0 ;
43 f o r ( i 3 =1; i3 <=i f p 1 ; i 3 += i p 1 ) {
44 f o r ( i 1 = i 3 ; i1 <=i 3 + ip1 −2; i 1 +=2) {
45 f o r ( i 2 = i 1 ; i2 <=i p 3 ; i 2 += i f p 2 ) {
46 k1 = i 2 ;
47 k2 = k1+ i f p 1 ;
48 tempr = wr∗ d a t a [ k2−1] − wi∗ d a t a [ k2 ] ;
49 tempi = wr∗ d a t a [ k2 ] + wi∗ d a t a [ k2−1];
50 d a t a [ k2−1] = d a t a [ k1−1] − t empr ;
51 d a t a [ k2 ] = d a t a [ k1 ] − t empi ;
52 d a t a [ k1−1] += tempr ; d a t a [ k1 ] += tempi ;
53 }
54 }
55 wt = wr ;
56 wr = wt∗wpr − wi∗wpi ;
57 wi = wi∗wpr + wt∗wpi ;
58 }
59 i f p 1 = i f p 2 ;
60 }
61 nprev ∗= n ;
62 }
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Appendix A

Qucs file formats

Qucs uses plain-text (ASCII) files as its input and transfer format for netlists and data. This appendix
explains the file formats by describing the grammars of the languages used. The files are generally line-
oriented but arbitrary whitespace between the token is allowed. You can also use the backslash (\) to
continue a line on the next line. This works almost everywhere but in comment lines.

The grammars are presented using a version of the Extended Backus-Naur Form (EBNF) which works as
follows:

A→ B Nonterminal A produces sentential form B.
B|C Produces B or C.
{A} Arbitrary repetition of form A. No repetition is allowed as well (“Kleene operator”).
[ A ] Form A is optional.
(A) Grouping, stands for A itself.

Nonterminal symbols are set in normal font, terminal symbols are in bold font. Terminal symbols in single
quotes are literally found in the input while the other terminal symbols are compositions. See below for
definition of composed terminal symbols.
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A.1 Qucs netlist grammar

Syntactic Structure

Input → { InputLine }
InputLine → DefinitionLine

| SubcircuitBody
| EquationLine
| ActionLine
| [ ‘#’ ( Entire line is comment ) ] Eol

A netlist is read in a line-based fashion. There are several types of lines.

Definition

DefinitionLine → Identifier ‘:’ Identifier { Identifier } PairList Eol

Components of the circuit are defined by providing its nodes and parameters for a property.

Subcircuits

SubcircuitBody → DefBegin { DefBodyLine } DefEnd
DefBegin → ‘.’ ‘Def’ ‘:’ Identifier { Identifier } Eol
DefBodyLine → DefinitionLine

| SubcircuitBody
| Eol

DefEnd → ‘.’ ‘Def’ ‘:’ ‘End’ Eol

Subcircuits are recursively defined by blocks of component definitions.

Action

ActionLine → ‘.’ Identifier ‘:’ Identifier PairList Eol

Defines what to simulate with the circuit.

Equation

EquationLine → ‘Eqn’ ‘:’ Identifier Equation { Equation } Eol
Equation → Identifier ‘=’ ‘“’ Expression ‘“’

Named equation definitions consist of a list of assignments with expressions on their right hand side.

Declarations

PairList → { Identifier ‘=’ Value }
Value → PropertyValue
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| ‘“’ PropertyValue ‘“’
PropertyValue → Identifier

| PropertyReal
| ‘[’ PropertyReal [ { ‘;’ PropertyReal } ] ‘]’

PropertyReal → Real [ Scale [ Unit ] ]

The above constructs are used to define properties (parameters) of components and actions.

Mathematical Expressions

Expression → Constant
| Reference
| Application
| ‘(’ Expression ‘)’

Constant → Real
| Imag
| Character
| String
| Range

Range → [ Real ] ‘:’ [ Real ]
Reference → Identifier
Application → Identifier ‘(’ Expression [ { ‘,’ Expression } ] ‘)’

| Reference ‘[’ Expression [ { ‘,’ Expression } ] ‘]’
| ( ‘+’ | ‘-’ ) Expression
| Expression ( ‘+’ |‘-’ |‘*’ |‘/’ |‘%’ |‘ˆ’ ) Expression

Operator precedence works as expected in common mathematical expressions.

Lexical structure

Identifier → Alpha { AlphaNum } { ‘.’ Alpha { AlphaNum } }
Alpha → ‘a’ | . . . | ‘z’ | ‘A’ | . . . | ‘Z’|‘ ’
AlphaNum → ‘a’ | . . . | ‘z’ | ‘A’ | . . . | ‘Z’| ‘0’ . . . ‘9’ | ‘ ’
Real → [ ‘+’ | ‘-’ ] [ Num ] ‘.’ Num [ ( ‘e’ |‘E’ ) [ ‘+’ | ‘-’ ] Num ]
Num → Digit { Digit }
Digit → ‘0’ . . . ‘9’
Imag → [ ‘+’ | ‘-’ ] ( ‘i’ |‘j’ ) [ Num ] ‘.’ Num [ ( ‘e’ |‘E’ ) [ ‘+’ | ‘-’ ] Num ]
Character → ‘’’ ( Any character but newline and ‘’’ ) ‘’’
String → ‘’’ { ( Any character but newline and ‘’’ ) } ‘’’
Scale → ( ‘dBm’ | ‘dB’ | ‘T’ | ‘G’ | ‘M’ |‘k’ | ‘m’ | ‘u’ | ‘n’ | ‘p’ |‘f’ | ‘a’ )
Unit → ( ‘Ohm’ | ‘S’ | ‘s’ | ‘K’ | ‘H’ | ‘F’ | ‘Hz’ | ‘V’ | ‘A’ | ‘W’ | ‘m’ )
Eol → [ ‘\r’ ] ‘\n’

This defines the composed terminal symbols.
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A.2 Qucs dataset grammar

Syntactic structure

Input → VersionLine { Variable }
VersionLine → ‘<Qucs Dataset ’ Num ‘.’ Num ‘.’ Num ‘>’ Eol

The file consists of a header line indicating the software version and a number of variables.

Data

Variable → ‘<dep’ Identifier { Identifier } ‘>’ { Float } ‘</dep>’
| ‘<indep’ Identifier Integer ‘>’ { Float } ‘</indep>’
| ‘#’ ( Entire line is comment ) Eol

The Float values itself may be scattered over several lines. An independent variable denotes a list of real or
complex values. The dependent variables denote lists of real or complex values depending on independent
variables, i.e. a function of some other variable, a f (x, . . .) in mathematical terms.

Lexical structure

Float → Real
| Imag
| Complex

Real → [ ‘+’ | ‘-’ ] [ Num ] ‘.’ Num [ ( ‘e’ | ‘E’ ) [ ‘+’ | ‘-’ ] Num ]
Imag → [ ‘+’ | ‘-’ ] ( ‘i’ | ‘j’ ) [ Num ] ‘.’ Num [ ( ‘e’ | ‘E’ ) [ ‘+’ | ‘-’ ] Num ]
Complex → Real Imag
Num → Digit { Digit }
Digit → ‘0’ . . . ‘9’
Integer → [ ‘+’ | ‘-’ ] Num
Eol → [ ‘\r’ ] ‘\n’
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technische Ausführung, Technologien ed. Berlin Heidelberg: Springer Verlag, 1983.

[66] B. C. Wadell, Transmission Line Design Handbook. Boston London: Artech House, Inc., 1991.

[67] M. Abramowitz and I. A. Segun, Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables. New York: Dover Publications, Inc., May 1968.
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