
Qucs

A Tutorial

Component, compact device and circuit modelling using symbolic
equations

Mike Brinson

Copyright c© 2007 Mike Brinson <mbrin72043@yahoo.co.uk>

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation. A copy of the license is included in the section entitled ”GNU
Free Documentation License”.

Introduction

Qucs releases 0.0.11 and 0.0.12 mark a turning point in the development of the Qucs
component and circuit modelling facilities. Release 0.0.11 introduced component values
defined by equations and for the first time allowed subcircuits with parameters. Release
0.0.12 extends these features to add model development using symbolic equations that are
similar to compact device code written in the Verilog-A modelling language. In designing
the latest Qucs modelling features the Qucs team has made a central focus of their work
the need to provide the package with an interactive and easy to use modelling system
which allows fast model prototype construction. Much of these new aspects have up to
now been undocumented and are likely to be very new to most Qucs users. The aim of
this tutorial note is to outline the background to these important package extensions and
to provide real help to Qucs users who are interested in writing and experimenting with
their own models. The text includes a number of illustrative examples for readers to try
and experiment with.

Qucs electronic device and circuit modelling

Circuit simulation packages are complex software systems which often take years to ma-
ture to a stage where they are capable of analysing the current generation of integrated
and discrete electronic circuits. Most circuit simulators have a number of common basic
attributes; firstly circuits are represented by a textual netlist or a schematic diagram which
contains all the information required by a simulator to analyse the performance of a circuit,
and secondly a simulation engine which undertakes the calculation of circuit performance
in one or more different circuit domains such as DC, AC or transient, and thirdly a post
simulation processing system which structures and displays the simulation data in both
tabular and graphical forms. All circuit simulators have one other important attribute,
namely that they represent individual electronic components by a model, or abstraction,
in a way that can be understood and analysed by the simulation engine when undertaking
a simulation task. Without component models the science of circuit simulation would not
have developed to the stage it has today. From a users point of view component models
are the key to simulator productivity; the greater the number of different models the easier
it becomes to analyse mixed analogue and digital electronic systems.

Shown in Fig. 1 is a block diagram of the analogue component modelling and simulation
facilities currently provided by the Qucs package. The diagram is structured as a flow chart
which emphasises the different device modelling routes. When Qucs was first released only
two of these were available for users to develop new device models. The first of these
has been used extensively by the package developers to construct the built-in models that
are distributed with each Qucs release. This fundamental route involves hand coding
the C++ code for a new model1, its compilation and linking with the core Qucs C++

1The technical details of the built-in models are described in: Qucs Technical Papers, Stefan Jahn,

1

code. Obviously, this does require a specialised knowledge of the Qucs model programming
interface2, the necessary C++ skills, including a good working knowledge of the Trolltech
Qt toolkit3. At the time of writing these notes the latest device to be added to Qucs
using this approach is the exponential pulse source4. Models based on hand written C++
code are normally restricted to basic devices that form the fundamental component core
of a simulator - particularly where simulation computational efficiency is important. One
disadvantage of this approach, is the obvious one, in that the time to implement a new
model increases disproportionately with increasing model complexity. For most Qucs users
this route would not be the most natural to use when developing new models. However, for
the specialist who spends a significant amount of time researching new device models this
has always in the past, been the route of choice. Unfortunately, modern semiconductor
device models are becoming so complex that the model development time can stretch
into months or even years and requires typically thousands of lines of C or C++ code to
characterise a model5. With the more complex models the problem of finding bugs in the
model code also acts as a limit to fast model development.

For the average Qucs user their first introduction to the software is probably through
constructing circuit schematics made entirely from the standard component models built
into the package and the testing of their performance by launching the simulator from
one of the Qucs simulation icons.6 The next natural stage in the Qucs modelling and
simulation learning curve is the use of subcircuits where groups of built-in components are
collected together to form a higher level circuit block. These blocks are often arranged with
a common theme, forming a Qucs library. The process of modelling new devices/circuits
is normally done by connecting existing component models and user defined subcircuits.
With this type of modelling higher level functional models can only be constructed from
existing fundamental components or previously constructed subcircuits. Engineers often
call this approach to modelling, macromodelling. Qucs releases up to 0.0.10 relied on
macromodelling for functional model development via the Qucs schematic interface. This
route remains popular amongst most Qucs users because it is easy to understand, is fully
interactive and allows straight forward testing of new models. One feature that is common
to all components included in Qucs releases up to 0.0.10 may not be immediately obvious to
readers, namely that, with the exception of sweep variables, component values could only
be numbers, for example R1 = 1k, and were not allowed to be represented by algebraic
expressions like R1 = Value1, where Value1 = 100.0+50 ·X. Its also worth pointing out at

Michael Margraf, Vincent Habchi and Raimund Jacob, http://qucs.sourceforge.net/technical.html.
2Writing the documentation for the Qucs model programming interface is on the to do list and will be

completed, when time allows, sometime in the future.
3Qt is a registered trademark of Trolltech, Norway; http://www.trolltech.com/copyright.
4Added by Gunther Kraut on 15 April 2007. This device has been added for compatibility with SPICE.
5A good introduction to writing compact device models is given in “How to (and how not to) write

a compact model in Verilog-A”, Geoffrey J. Coram, 2004, Proc. 2004 IEEE International Behavioral
Modeling and Simulation Conference (BMAS 2004), pp 97- 106.

6The “Getting Started with Qucs” tutorial by Stefan Jahn outlines a number of basic simulation tech-
niques; http://qucs.sourceforge.net/docs.html.

2

http://qucs.sourceforge.net/technical.html
http://www.trolltech.com/copyright
http://qucs.sourceforge.net/docs.html

QUCS GUI
Circuit

entered using
schematic capture

C++ code

Schematic
capture
symbols

SPICE
preprocessor

Nonlinear equation
defined devices

Component
data processing

using Qucs
equations

User
defined
subcircuit
schematic
capture
symbol

Simulation output data

QUCSATOR

C++ component code
compiled and linked
to Qucsator core C++
code via API

User defined
subcircuits

Qucs
components

Simulate

Symbolic
equations

Post simulation
data processing
using Qucs
equations

Qucs plots
and tables

Hand coded
device model
C++ code

ADMS
compiler

Verilog-A
Compact
device
code

SPICE
netlist

SPICE
parameterised

netlist

Qucs
Library

components

Generate Qucs netlist code
from GUI schematic, including
conversion of SPICE code to
Qucs format

Qucs Tools:
Line Calculator
Attenuator Design
Matching Circuits
Filter Design

Figure 1: Qucs analogue component modelling and simulation block diagram (not including
optimisation)

3

this point that during simulation, again performed by Qucs releases up to 0.0.10, component
values were required to remain constant and could not be a function of the circuit variables
such as voltage, current or charge.

One way to remove the component value restrictions imposed by early Qucs releases is
to model devices and circuits using preprocessor extended forms of the SPICE netlist
language. Circuit design equations can then be embedded in SPICE netlists and the
calculation of component values completed by the SPICE preprocessor. Both the SPICE
to Qucs and OP AMP tutorials7 outline in detail the steps required to merge circuit design
and simulation in this way. This modelling route is a very important and powerful model
development tool. So much so that ongoing tests to identify how compatible Qucs is with
the industrial standard SPICE 2g6 and 3f5 syntax are currently being undertaken as part
of the Qucs development schedule8. Although perfectly viable as a model development
tool the use of an extended SPICE netlist language has a number of serious disadvantages,
namely that not all the Qucs built-in component models have equivalent SPICE models
and secondly text netlists are the only entry medium for describing models.

The previous paragraphs give a brief statement of the different component modelling routes
that were available up to release 0.0.11. Qucs 0.0.11 is very much a modelling water shed in
that symbolic equations were introduced for the calculation of component values, previously
equations were only allowed when structuring simulation output data for post simulation
listing or plotting. Release 0.0.11 allows the following types of variable;

1. sweep variables,

2. equations left hand side,

3. component parameter’s left hand side (e.g. R1.R),

4. subcircuit parameters and

5. simulation output data.

With each Qucs release the number of analysis functions, and other data processing fea-
tures, included in the Qucs equation set continues to expand9. From release 0.0.11 pa-
rameters are also allowed with subcircuits so that data can be passed to a model. This
allows generalised subcircuit/macromodels to be developed for popular devices such as op-
erational amplifiers. Through the use of embedded design equations within subcircuits and
parameter passing it became possible to construct powerful models that mix both circuit

7Qucs simulation of SPICE netlists and Modelling Operational Amplifiers, Mike Brinson, http://qucs.
sourceforge.net/docs.html.

8Qucs: Report Book; SPICE to Qucs test reports, Mike Brinson, http://qucs.sourceforge.net/
docs.html.

9See Measurement Expressions Reference Manual, Gunther Kraut and Stefan Jahn, http://qucs.
sourceforge.net/docs.html.

4

http://qucs.sourceforge.net/docs.html
http://qucs.sourceforge.net/docs.html
http://qucs.sourceforge.net/docs.html
http://qucs.sourceforge.net/docs.html
http://qucs.sourceforge.net/docs.html
http://qucs.sourceforge.net/docs.html

design procedures and the calculation of individual component values. Qucs 0.0.11 still
imposed the restriction that equations could not be functions of voltage, current or charge.

With the release of Qucs 0.0.12 the voltage, current and charge restrictions imposed on
equations will finally be relaxed. The introduction of a new device modelling component
called the equation defined device (EDD) allows firstly device current to be formulated as
a function of voltage, and secondly device charge to be calculated as a function of voltage
and current. The syntax adopted for the new model borrows heavily on the compact device
modelling approach taken by the Verilog-A modelling language.

Some readers will probably have noted that so far these notes make no reference to the
ADMS model development route illustrated in Fig. 1. ADMS stands for Automated device
model synthesizer10 and includes a Verilog-A to C/C++ compiler. It allows compact
device models to be described in the Verilog-A language then compiled to C/C++ and
the resulting code linked with the Qucs core simulation code11. Model development using
ADMS is similar to the fundamental hand coded C++ model development route except that
model development is greatly simplified by the power of the high level Verilog-A language.
A strong relationship exists between the ADMS and EDD modelling procedures in that
EDD can be considered a fast interactive model prototyping method whose equations can
easily be expressed in Verilog-A and compiled into C/C++ code for permanent inclusion
in the Qucs simulator12.

The opening paragraphs attempt to outline the available device modelling techniques that
are central to the functioning of the Qucs package. The remaining sections of this tutorial
note are devoted to illustrating the power of Qucs modelling through the introduction of a
number of illustrative examples. Initially these start from a simple, and hopefully familiar,
point and then proceed to more complex examples which present many of the concepts
lightly touched upon in the opening text.

Extending circuit simulation capabilities with equations

Just adding component value calculations, via equations, to a circuit simulator immediately
increases the underlying design and simulation capabilities way beyond that found in earlier
generation simulators. Consider the simple RC circuit shown in Fig. 2. Capacitor Cap is
stepped from 0.1µF to 1.1µF and the small signal AC response of the network calculated.
In this example the values for both R1 and Cap are given as numeric values. The simulation
test shows the effect of stepping the value of one component through a series of values and

10L.Lemaitre, C.C. McAndrew, and S. Hamm, ADMS - Automated Device Model Synthesizer, Proc.
IEEE CICC, 2002.

11For more details see, Qucs Description: Verilog-AMS interface, Stefan Jahn and Hélène Parruitte,
http://qucs.sourceforge.net/docs.html.

12Appendix A gives an operator and function comparison table for Qucs and Verilog-A.

5

http://qucs.sourceforge.net/docs.html

recording the effect of component changes on circuit performance. In other words this is a
classical circuit analysis use of a circuit simulator. In a real design situation different data
is often required. Most designers would prefer to find the value of Cap that gives a specific
RC cut-off frequency (fc) for a specified value of R1. This is the type of investigative
problem where adding equations into the simulation process generates more informative
results. Shown in Fig. 3 is a similar RC network to that illustrated in Fig. 2.
Capacitor voltage V Cap is given by:

VCap =
V1√

1 + ω2 ·C2
1 ·R2

1

(1)

where the cut-off frequency in the voltage transfer function is

fc =
1

2π ·R1 ·C1

(2)

Hence, by expressing Cap as a function of fc and stepping fc through a range of frequen-
cies, the effect of capacitance changes on the voltage transfer function can be found. More
importantly a nomogram of Cap values against fc can be plotted giving the circuit de-
signer a visual aid for determing the value of Cap required for given values of R1 and fc.
Although the circuits shown in Figs. 2 and 3 are very basic they do demonstrate how much
more powerful a circuit simulator becomes when component values are calculated using
equations.

Low pass active filter design with embedded design equations

In this section a more advanced circuit design example is introduced to illustrate the power
of embedded design equations in a Qucs simulation schematic. A second order Sallen-Key
low pass filter is employed for this task because it is so well known and most readers are
likely to have met it’s design in the past. A second order low pass filter is represented by
the voltage transfer function:

A(S) =
Vout

Vin

=
A0

(1 + a2 ·S + b2 ·S2)
(3)

where A0 is the passband DC gain and coefficients a2, b2 are for Bessel, Butterworth,
Tschebyscheff or similar polynomials.

The following list13 gives the second order coefficients for the Bessel → 1.3617, 0.618;
Butterworth → 1.4142, 1.000; and 3dB ripple Tschebyscheff → 1.065, 1.9305, polynomials.
The second order Sallen-Key low pass filter circuit is shown in Fig. 4. This circuit has a
voltage gain transfer function given by:

13See OP Amps for everyone, Chapter 16: Active filter design technology, Texas Instruments, August
2002, SL0D006B, PP 16.1,16.63.

6

V1
U=1 V

C1
C=Cap

Parameter
sweep

SW1
Sim=AC1
Type=lin
Param=Cap
Start=0.1u
Stop=1.1u
Points=11

ac simulation

AC1
Type=log
Start=1Hz
Stop=1 MHz
Points=61

R1
R=1k

VCap

1 10 100 1e3 1e4 1e5 1e6

0

0.5

1

acfrequency

V
C

ap
.v

2 4 6 8 10
0

5e-7

1e-6

number

C
ap

Figure 2: A simple RC circuit simulation using numerical component values

7

V1
U=1 V

C1
C=CapR1

R=Rvalue

Parameter
sweep

SW1
Sim=AC1
Type=log
Param=fc
Start=10
Stop=1000
Points=21

ac simulation

AC1
Type=log
Start=1Hz
Stop=1 MHz
Points=61

Equation

Eqn1
Rvalue=1000
Cap=1/(2*pi*Rvalue*fc)

VCap

1 10 100 1e3 1e4 1e5 1e6

0

0.5

1

acfrequency

V
C

ap
.v

10 100 1e3
1e-7

1e-6

1e-5

fc

C
ap

Figure 3: A simple RC circuit simulation employing equation determined component values

8

A(S) =
A0

1 + ωc · [C1 · (R1 + R2) + (1− A0) ·R1 ·C2] ·S + ω2
c ·R1 ·R2 ·C1 ·C2 ·S2

(4)

where

A0 = 1 +
R3

R4

(5)

This can be simplified by letting R1 = R2 = R and C1 = C2 = C; the transfer function
then becomes:

A(S) =
A0

1 + [ωc ·R ·C · (3− A0)] ·S +
[
(ωc ·R ·C)2] ·S2

. (6)

By comparison
a2 = ωc ·R ·C · (3− A0) (7)

and
b2 = (ωc ·R ·C)2 (8)

Fixing C and solving for R and A0, yields

R =

√
b2

ωc ·C
, and A0 = 3− a2√

b2

. (9)

Also once A0 is known the value for R4 can be calculated using equation

A0 = 1 +
R3

R4
. (10)

Hence by providing values for C and R3 the values for R and A0, and of course R4, can be
determined for a specified cut off frequency fc. Figure 5 shows the final design schematic
and the simulation results for this example. A number of important observations can be
made from Fig. 5:

1. One or more equation blocks hold both design and post simulation data processing
equations plus assignments for named items: C, fc and R3 are given numerical
values, the a and b polynomial coefficients are set to the values introduced in the
text, and finally the design equations for R, A0 and R4 calculations are listed.

2. The order of entries in equation blocks is not important because Qucs automatically
sorts out the data it requires when calculating equations.

3. The lefthand quantities in the assignment entries in the equation blocks are linked
to the component values in the schematic, see for example C and R.

4. The OP27 operational amplifier model is from the modified Qucs 0.0.11 OPAMP
library. This model was generated using the SPICE to Qucs modelling route.

9

-

+

OPA27(TI)

VCC

VEE

SUB1

V2
U=15 V

V3
U=15 V

V1
U=1 V R2R1

C1

C2

R3 R4

Vout

Figure 4: The Sallen-Key lowpass active filter circuit

5. To design and simulate a Sallen-Key low pass filter with a different cut off frequency14

simply change the value of fc and rerun the Qucs simulator.

6. On completion of a simulation, pressing key F5 (Show last messages) causes the
simulation log to be displayed. This includes the calculated values of the components
and the netlist for the circuit, see Fig. 6.

7. One final point of significance that some readers may have noticed - all numerical
values in equation blocks must be specified in scientific notation; electronic notation
like 1k or 3nF is not allowed15.

14If the design calculations result in impractical values for the filter components then the value of C
should be changed and the simulation repeated.

15In long term it is expected that electronic notation will be allowed. The changes for this are on the to
do list but at the moment the work has a low priority.

10

-

+

OPA27(TI)

VCC

VEE

SUB1

V2
U=15 V

V3
U=15 V

V1
U=1 V R2

R=R
R1
R=R

C2
C=C

C1
C=C

R3
R=R3_calc

R4
R=R4_calc

Equation

Eqn1
C=22e-9
a2=1.065
b2=1.9305
fc=3000
R=sqrt(b2)/(2*pi*fc*C)
A0=3-a2/(sqrt(b2))
R3_calc=4700
R4_calc=(A0-1)*R3_calc
gain_dB=dB(Vout.v)
gain_phase=rad2deg(unwrap(angle(Vout.v)))

ac simulation

AC1
Type=log
Start=1 Hz
Stop=100 kHz
Points=101

dc simulation

DC1

Vout

1 10 100 1e3 1e4 1e5

0

2

4

acfrequency

V
ou

t.v

1 10 100 1e3 1e4 1e5

-200

-100

0

acfrequency

ga
in

_p
ha

se

1 10 100 1e3 1e4 1e5

-50

0

acfrequency

ga
in

_d
B

Figure 5: The Sallen-Key lowpass active filter schematic with embedded design equations

11

Output :
−−−−−−−
n e t l i s t content

13 R in s t an c e s
5 C in s t an c e s
2 VCCS in s t an c e s
5 CCCS in s t an c e s
2 VCVS in s t an c e s
1 CCVS in s t an c e s
8 Vdc i n s t an c e s
1 Idc i n s t an c e s
1 Vac i n s t an c e s
4 Diode i n s t an c e s
2 BJT in s t an c e s
1 DC in s t an c e s
1 AC in s t an c e s

c r e a t i n g n e t l i s t . . .
checker not i ce , v a r i ab l e ‘Vout . v ’ in equat ion ‘ ga in dB’ not yet de f ined
checker not i ce , v a r i ab l e ‘Vout . v ’ in equat ion ‘ ga in phase ’ not yet de f ined
kB = 1 . 38065e−23
e = 2 . 71828
p i = 3 . 14159
C = 2 . 2e−08
a2 = 1 . 065
b2 = 1 . 9305
f c = 3000
R = 3350 . 51
A0 = 2 . 2335
R3 ca l c = 4700
R4 ca l c = 5797 . 43
kB = 1 . 38065e−23
e = 2 . 71828
p i = 3 . 14159
kB = 1 . 38065e−23
e = 2 . 71828
p i = 3 . 14159
kB = 1 . 38065e−23
e = 2 . 71828
p i = 3 . 14159

Figure 6: Message output log for the simulation of the Sallen-key low pass circuit: for
brevity only the component value section is given

12

Introduction to Qucs subcircuit parameters

Subcircuits are a concept that has been part of the simulation scene for a long time. All
circuit simulators based on SPICE have subcircuits as part of their basic device compliment.
This is not surprising because they form a natural way of breaking an electronic system
down into a number of smaller self contained functional blocks. What is surprising however,
is the fact that a significant number of simulators, including SPICE 2g6 and 3f516, do not
allow parameters to be passed to a subcircuit. Parameter passing appears to have been
first introduced when a number of the popular commercial circuit simulators were being
developed17. Qucs releases up to version 0.0.10 are similar to SPICE in that they also did
not allow parameters with subcircuits.

This very important limitation has been removed with release 0.0.11, which allows param-
eters to be attached to component symbols and used in subcircuit equation calculations.
Shown in Fig. 7 are the circuit schematic and user generated symbol for a simple harmonic
generator with a fundamental and three harmonic sinusoidal components. Parameters f1
to f4 determine these frequency components. Notice that an equation block, at the circuit
schematic level, is used to calculate the harmonic frequencies. Parameters ph1 to ph4 set
the phase of the individual sinusoidal oscillators. The process of attaching parameters,
and their default values, to a subcircuit symbol is straightforward; simply right click on
the symbol subcircuit name, SUB1 in Fig. 7, and an Edit Subcircuit Properties dialog
box appears allowing parameter names and their default values to be entered18. Subcir-
cuit parameters and their values are normally displayed as a list underneath the subcircuit
name. Changing parameter values is done in a similar fashion to changing the values of
the standard built-in components. The diagram and simulation results illustrated in Fig. 8
show a waveform formed from a fundamental and two harmonics.

An equation block is employed to calculate and plot the amplitude and power spectral
densities of the harmonic waveform. By changing the fundamental frequency, signal am-
plitudes and phases different wave shapes can be generated by resimulating the circuit. In
this example transient analysis is used to generate the harmonic waveform with the run
time set to 10ms and the number of points equal to 50019. This gives a sampling time of
20µs and a sampling frequency of 50kHz. Equation block Eqn1 demonstrates how the Qucs
functions20 can be used to postprocess simulation generated data - in this example they
are used to compute the DFT of the harmonic generator waveform, convert the resulting

16One of the reasons SPICE preprocessors were developed was to allow parameter passing to subroutines,
for more details see Qucs Tutorial: Qucs simulation of SPICE netlists, Mike Brinson, http://qucs.
sourceforge.net/.

17See, for example, the extended netlist format originally designed by the MicroSim Corporation for the
PSpice circuit simulator.

18See Appendix B for a more detailed description of the procedure.
19Qucs function length() determines the correct data length in equation block Eqn1 calculations.
20If you have used a program like Octave, or indeed Matlab, many of these functions should be familiar

to you. These functions provide Qucs with powerful numerical resource which significantly extends the
range of problems that Qucs can analyse.

13

http://qucs.sourceforge.net/
http://qucs.sourceforge.net/

P_sig
V1
U=f1_amp
f=f1
Phase=ph1

V2
U=f2_amp
f=f2
Phase=ph2

V4
U=f4_amp
f=f4
Phase=ph4

V3
U=f3_amp
f=f3
Phase=ph3

Equation

Eqn1
f2=2*f1
f3=3*f1
f4=4*f1

HG1

SUB1
f1=1000
f1_amp=1.0
f2_amp=0.0
ph1=0.0
ph2=0.0
f3_amp=0.0
f4_amp=0.0
ph3=0.0
ph4=0.0

Figure 7: Harmonic generator subcircuit schematic and symbol

spectra from double sided to single sided form, compute and plot the amplitude and power
spectral densities.

14

HG1

SUB1
f1=1000
f1_amp=5.0
f2_amp=2.0
ph1=0
ph2=0
f3_amp=2
f4_amp=0
ph3=0
ph4=90

R1
R=50 Ohm

transient
simulation

TR1
Type=lin
Start=0
Stop=10 ms
Points=500

Equation

Eqn1
ts=(max(time)-min(time))/length(time)
fs=1/ts
Adft=dft(hg_sig.Vt)
LAdft=length(hg_sig.Vt)
Amp2=2*Adft[1:(LAdfto2)-1]
LAdfto2=LAdft/2
Amp_squared=Adft[:LAdfto2]*conj(Adft[:LAdfto2])
Amp=sqrt(Amp_squared)
f_bin=linspace(1, LAdfto2, LAdfto2)
f=(f_bin-1)*fs/LAdft
PLAmp=PlotVs(2*Amp/LAdft,f)
PLPower=PlotVs(4*Amp*Amp/(LAdft*LAdft),f)

hg_sig

0 1e-3 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

-5

0

5

time

hg
_s

ig
.V

t

0 5e3 1e4 1.5e4 2e4 2.5e4

0

10

20

30

Frequency Hz

P
ow

er
 S

pe
ct

ra
l d

en
si

ty
 (V

^2
)

P
LP

ow
er

0 5e3 1e4 1.5e4 2e4 2.5e4

0

2

4

6

Frequency Hz

A
m

pl
itu

de
 S

pe
ct

ra
l d

en
si

ty
 (V

)
P

LA
m

p

Figure 8: Harmonic generator subcircuit test circuit and simulation waveforms

15

Building universal macromodels using subcircuits and

parameters

Passing parameters to subcircuits allows universal macromodels to be built. One obvious
application of this technique is the modelling of operational amplifiers (OP AMP) and other
integrated circuits. The approach adopted is similar to that outlined in the last section.
However, because of the complexity of the models it is advisable to break a model into a
series of smaller blocks. These are then combined to form a complete subcircuit macro-
model. Two techniques are possible when partitioning models, these are demonstrated
next. Shown in Fig. 9 is a simple AC OP AMP model21 consisting of an input stage, an
intermediate gain stage and an output stage22. An equation block, if needed, is associated
with each stage. These blocks contain the equations for calculating the component values
in a given stage. A single schematic symbol represents the model. This has a list of param-
eters attached. The flow of information into a macromodel starts with parameters passed
into a subcircuit, via a schematic symbol, then onto the equation blocks, where it is finally
used to calculate the component values. Hence, by simply changing the subcircuit parame-
ters different OP AMPs can be simulated using a single generalised macromodel. However,
please note that different OP AMP circuit structures, or indeed technologies, naturally re-
sult in a series of generalised subcircuit macromodels to cover all possible types in a given
device family. The second technique involves breaking a model down into smaller blocks
and associating subcircuit symbols with each block. This approach is illustrated in Fig. 10.
Again parameters are passed from the top level symbol (called AC in the schematic) to the
inner subcircuits. These pass their own parameters down a subcircuit level where the com-
ponent calculations are completed. The second technique results in two levels of subcircuit,
accounting for the change in parameter name when passing a parameter from top to lower
hierarchy. A second more detailed example showing how to construct nested subcircuits is
presented later in these notes.

In reality the macromodel for a typical OP AMP that models DC, AC and transient
domains is much more complex than the model given in Fig. 9. The schematic for a typical
multi-domain OP AMP modular macromodel is shown in Fig. 11, where each section of
the macromodel is represented, if needed, by it’s own equation block.

The test schematics shown in Figures. 12 and 13 show two OP AMPs with different sub-
circuit parameters. In Fig. 12 the small signal characteristics of unity gain closed loop
amplifiers clearly show the difference in performance of the OP AMPs. Figure 13 is par-
ticularly interesting in that it illustrates how Qucs can be used to determine the effect

21The term AC here refers to the fact that the OP AMP model chosen for demonstration purposes is
a simplified version of a multi-domain OP AMP model. It only models small signal AC parameters and
device input stage bias and offset properties.

22The schematic shown in Fig. 9 forms part of a modular OP AMP macromodel. A detailed description
of the function of individual networks and the derivation of the component equations is given in Qucs
tutorial Modelling Operational Amplifiers, Mike Brinson, http://qucs.sourceforge.net/docs.html.

16

http://qucs.sourceforge.net/docs.html

P_INN1

Voff1
U=voff1

Ib1
I=ib

Ib2
I=ib

Ioff1
I=ioff1

R1
R=r1

R2
R=r2

Cin1
C=cd

P_INP1

Voff2
U=voff2

EOS1
G=1

ROS1
R=ro

P_OUT1

Equation

Eqn1
voff1=voff/2
voff2=voff/2
ioff1=ioff/2
r1=rd/2
r2=rd/2

RSRT1
R=1

GMSRT1
G=0.01 S

GMP1
G=1 S

CP1
C=cp1

RADO1
R=aoldc

Equation

Eqn2
cp1=1/(2*pi*gbp)

AC
-
+

SUB1
voff=0.7e-3
ioff=80e-3
rd=2e6
cd=1.4e-12
aoldc=200e3
gbp=1e6
ro=75

Input Stage

Intermediate gain stage

Output stage

Figure 9: Expanded AC OP AMP model showing circuitry and equation blocks

of amplifier offset voltage on integrator DC saturation by stepping resister rp through a
series of values. The low offset voltage of the OP27 makes this device much more suitable
for integrator circuits when compared to the popular UA741. These results can be con-
firmed by a simple calculation: the offset voltage for the UA741 is set at 0.7 mV and the
amplifier open loop DC gain at roughly 200, 000. The UA741 goes into saturation when
rp is approximately 20 MΩ. In saturation the OP AMP gain becomes open loop giving a
DC output voltage of roughly 0.7e-3 · 2e5 or 14 V, which agrees with the Qucs simulation
results.

17

ON

Input
Stage

OP

IN

IP

SUB2
voff=v_off
ioff=i_off
rd=r_d
ib=i_b
cd=c_d

IN

Inter
stage

IP

O

SUB3
gbp=g_bp
aoldc=a_oldc

P_INN1

P_INP1

P_OUT1

P_INN2

Voff1
U=voff1

Ib1
I=ib

Ib2
I=ib

Ioff1
I=ioff1

R1
R=r1

R2
R=r2

Cin1
C=cd

P_INP2

Voff2
U=voff2

Equation

Eqn1
voff1=voff/2
voff2=voff/2
ioff1=ioff/2
r1=rd/2
r2=rd/2

P_INP3

P_INN3

RSRT1
R=1

GMSRT1
G=0.01 S

GMP1
G=1 S

RADO1
R=aoldc

Equation

Eqn2
cp1=1/(2*pi*gbp)

P_OUT2

P_INP4

P_INN4

-
AC

+

SUB1
v_off=0.7e-3
i_off=20e-9
r_d=2e6
c_d=1.4e-12
i_b=80e-9
g_bp=1e6
a_oldc=200e3
r_o=75

ON

Input
Stage

OP

IN

IP

SUB7
voff=v_off
ioff=i_off
rd=r_d
ib=i_b
cd=c_d

IN

Inter
stage

IP

O

SUB8
gbp=g_bp
aoldc=a_oldc

EOS1
G=1

PO1 ROS1
R=ro

P_OUT3

IN O

output

Stage

SUB4
ro=r_o

IN O

output

Stage

SUB9
ro=r_o

CP1
C=cp1

Figure 10: Modular AC OP AMP model showing subcircuits

18

RDCMZ
R=650M

RCM1
R=1M

SRC2
G=1 S

SRC3
G=1 S

RSRT1
R=1

GMSRT1
G=0.01 S

RSCALE1
R=100

SRC1
G=1 S

RSUM1
R=1

GMP1
G=1 S

P_INN

P_INP

Voff1
U=voff1

Voff2
U=voff2

Ib1
I=ib

Ib2
I=ib

Ioff1
I=ioff1

ECM1
G=ecm1

VSR1
U=p1

CP1
C=cp1

RADO
R=aoldc

ECL
G=1

RP2
R=1

EOS1
G=1

RDCCL1
R=100M

CP2
C=cp2

P_VCC

P_VEE

DVLM2
Is=8e-16 A

DVL1
Is=8e-16 A

ROS1
R=ro

D3
Is=1e-15 A
Cj0=0.0

D2
Is=1e-15 A
Cj0=0.0

HCL1
G=hcl1

VLIM1
U=vlim1

VLIM2
U=vlim2

R1
R=r1

R2
R=r2

Cin1
C=cd

Equation

Eqn1
voff1=voff/2
voff2=voff/2
ioff1=ioff/2
r1=rd/2
r2=rd/2

Equation

Eqn2
ecm1=1e6/cmrrdc
ccm1=1/(2*pi*1e6*fcmz)

D1
Is=1e-12 A
Bv=psum
Ibv=20 mA

Equation

Eqn4
cp1=1/(2*pi*gbp)

Equation

Eqn6
hcl1=0.9/idcoutm

Equation

Eqn7
vlim1=vcc-vccm+1
vlim2=-vee+veem+1

RCM2
R=1

Equation

Eqn3
p1=(100*pslewr)/(2*pi*gbp)-0.7
p2=(100*nslewr)/(2*pi*gbp)-0.7
psum=p1+p2

Equation

Eqn5
cp2=1/(2*pi*fp2)

CCM1
C=ccm1

GMP2
G=1 S

P_OUT

Figure 11: Modular OP AMP subcircuit schematic with embedded component calculation
equations

19

-

+

VCC

VEE

MOD

SUB2
voff=0.7e-3
ib=80e-9
ioff=10e-9
rd=2e6
cd=1.4e-12
cmrrdc=31622.77
fcmz=200.0
aoldc=199526.3
gbp=1e6
fp2=3e6
pslewr=0.5e6
nslewr=0.5e6
vcc=15
vee=-15
vccm=14
veem=-14
ro=75
idcoutm=34e-3

-

+

VCC

VEE

MOD

SUB1
voff=30e-6
ib=15e-9
ioff=12e-9
rd=4e6
cd=1.4e-12
cmrrdc=1778279.4
fcmz=2009.0
aoldc=1778279.4
gbp=8e6
fp2=17e6
pslewr=2.8e6
nslewr=2.8e6
vcc=15
vee=-15
vccm=14
veem=-14
ro=75
idcoutm=32e-3

R1
R=4.7k

R2
R=4.7k

R4
R=4.7k

R3
R=4.7k

V1
U=15 V

V2
U=15 V

V3
U=1 V

Equation

Eqn1
gain_ua741=dB(vout_ua741.v)
phase_ua741=phase(vout_ua741.v)
phase_op27=phase(vout_op27.v)
gain_op27=dB(vout_op27.v)

ac simulation

AC1
Type=log
Start=1 Hz
Stop=100MHz
Points=161

dc simulation

DC1

vout_ua741

vout_op27

number

1

vout_op27.V

-3.87e-05

vout_ua741.V

0.001

1 10 100 1e3 1e4 1e5 1e6 1e7 1e8

0

0.5

1

Frequency Hz

vo
ut

_o
p2

7.
v

vo
ut

_u
a7

41
.v

1 10 100 1e3 1e4 1e5 1e6 1e7 1e8
-60

-40

-20

0

Frequency Hz

ga
in

_o
p2

7
ga

in
_u

a7
41

1 10 100 1e3 1e4 1e5 1e6 1e7 1e8
-100

0

100

200

Frequency Hz

ph
as

e_
op

27
ph

as
e_

ua
74

1

Figure 12: Unity gain OP AMP test circuit and waveforms

20

-

+

VCC

VEE

MOD

SUB2
voff=30e-6
ib=15e-9
ioff=12e-9
rd=4e6
cd=1.4e-12
cmrrdc=1778279.4
fcmz=2009.0
aoldc=1778279.4
gbp=8e6
fp2=17e6
pslewr=2.8e6
nslewr=2.8e6
vcc=15
vee=-15
vccm=14
veem=-14
ro=75
idcoutm=32e-3

-

+

VCC

VEE

MOD

SUB1
voff=0.7e-3
ib=80e-9
ioff=10e-9
rd=2e6
cd=1.4e-12
cmrrdc=31622.77
fcmz=200.0
aoldc=199526.3
gbp=1e6
fp2=3e6
pslewr=0.5e6
nslewr=0.5e6
vcc=15
vee=-15
vccm=14
veem=-14
ro=75
idcoutm=34e-3

V1
U=15 V

V3
U=15 V

V4
U=15 V

V2
U=15 V

R1
R=1k

R2
R=1k

C1
C=1 uF

C2
C=1 uF

R4
R=rp

R3
R=rp

Parameter
sweep

SW1
Sim=DC1
Type=log
Param=rp
Start=1e3
Stop=1e9
Points=31

dc simulation

DC1

vout_op27

vout_ua741

1e3 1e4 1e5 1e6 1e7 1e8 1e9

0

5

10

15

rp

vo
ut

_u
a7

41
.V

vo
ut

_o
p2

7.
V

Figure 13: Integrator test circuits for determining DC saturation

21

More complex nested subcircuit models

In the previous two sections the example circuits only included subcircuits nested to one
or two levels. Qucs does however, allow subcircuits to be nested to an arbitrary level
and parameters can be passed down the nested chain to any depth required. Some care
is needed when setting up the parameter passing sequence. Shown in Fig. 14 is a top
level subcircuit with temperature swept between 10 and 110 centigrade. A simple resistor
voltage divider network is at the bottom of a series of linked subcircuits, three levels down.
R2 in the divider is a function of temperature. A schematic representation of the coupled
subcircuits parameter passing sequence is also given in the right hand side of Fig. 14. Each
level passes the value of temperature to it’s next lower member in the hierarchy. The
Qucs generated netlist given in Fig. 15 clearly shows the parameter passing mechanism
employed by Qucs. The ability to nest subcircuits and pass parameters down a hierarchy
is an important feature in Qucs because it allows both circuit design and device data to
be passed to different sections of the circuit/system being simulated. These parameters
can, of course, be at different levels in a problem hierarchy providing a very flexible and
powerful design/analysis tool.

V1
U=1 V

dc simulation

DC1

Parameter
sweep

SW1
Sim=DC1
Type=lin
Param=tsweep
Start=10
Stop=110
Points=100

SUB 3
OUTIN

SUB1
sp1=tsweep

R1
R=10k
Temp=tscan
Tc1=0.01
Tc2=0.015

R2
R=10k
Temp=26.85

P2P1

vp01

20 40 60 80 100
0.4

0.6

0.8

1

tsweep

vp
01

.V

IN

IN OUT

OUT

SUB3

SUB2

SUB1

OUTIN

Sp1 = tsweep

Sp2=Sp1

tscan=Sp2

Figure 14: A nested subcircuit showing parameter passing sequence

22

Qucs 0 . 0 . 12 /media/hda2/Qucs equat ion mode l l ing p r j / rd iv t e s t tsweep 3 l . sch
. Def : rd iv sub1 temp net1 net0 tscan=”27 ”
R:R2 gnd net0 R=”10k” Temp=”tscan ” Tc1=”0 . 01 ” Tc2=”0 . 015 ” Tnom=”26 . 85 ”
R:R1 net1 net0 R=”10k” Temp=”26 . 85 ” Tc1=”0 . 0 ” Tc2=”0 . 0 ” Tnom=”26 . 85 ”
. Def :End

. Def : rd iv t e s t 6 temp net1 net0 sp2=”27 ”
Sub :SUB1 net1 net0 Type=”rd iv sub1 temp” tscan=”sp2 ”
. Def :End

. Def : rd iv sub3 temp net0 net1 sp1=”27 ”
Sub :SUB1 net0 net1 Type=”rd iv t e s t 6 temp” sp2=”sp1 ”
. Def :End

Vdc :V1 net0 gnd U=”1 V”
.DC:DC1 Temp=”26 . 85 ” r e l t o l=”0 . 001 ” ab s t o l=”1 pA” vnto l=”1 uV”
saveOPs=”no ” MaxIter=”150 ” saveAl l=”no ” convHelper=”none ” So lve r=”CroutLU”
.SW:SW1 Sim=”DC1” Type=” l i n ” Param=”tsweep ” Start=”10 ” Stop=”110 ” Points=”100 ”
Sub :SUB1 net0 vp01 Type=”rd iv sub3 temp” sp1=”tsweep ”

Figure 15: Qucs netlist for nested subcircuit showing parameter passing sequence

Introduction to equation defined devices (EDD)

Although adding symbolic equations to a simulator merges circuit design and analysis, it
is by making these equations functions of circuit variables that the real power of modern
circuit simulator is fully exploited. Equations that are functions of voltage, current and
charge have to be continuously evaluated as a simulation progresses. This is in contrast
to the type of equations previously introduced, which are only evaluated at the start
of a simulation sequence. When component properties are functions of circuit variables
considerable complexity is added to a simulation engine and as a result most simulators
restrict such properties to a small number of component types, the most common being
controlled current and voltage generators23. Qucs version 0.0.12 introduces an equation
defined device (EDD) which allows it’s terminal currents to be functions of voltage, and
it’s stored charge to be functions of voltage and current. The EDD is similar, but more
advanced, to the B type controlled source implemented in SPICE 3f5. It is capable of
realising the same models as the SPICE B type device plus an extensive range of more
complex compact device models. At this stage in Qucs development only the explicit

23Probably the most well known non-linear controlled generators are the SPICE 2g6 and 3f5 forms,
see A. Vladimirescu, Kaihe Zhang, A.R. Newton, D.O. Pederson and A. Sangiovanni-Vincentelli, SPICE
Version 2G User’s Guide, 1981, Department of Electrical Engineering and Computer Sciences, University
of California, Berkeley, Ca. 94720, section 11, Appendix B: Nonlinear dependent sources., and B. Johnson,
T. Quarles, A.R. Newton, D.O. Pederson and A. Sangiovanni-Vincentelli, SPICE3 Version f User’s Manual,
1992, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Ca.
94720, section 3.2.2.4, Non-linear dependent sources.

23

form of EDD is implemented24. EDD is an advanced component that allows Qucs users
to construct their own device models from a set of equations derived from the physical
properties that characterise a device. The explicit form of EDD can only be used to develop
models for devices where their defining equations can be transformed into the explicit
analysis form required by Qucs25. A range of functions similar to those defined in the
Verilog-A compact device modelling language are provided by Qucs, making the equation
modelling language easy to use and powerful. The ternary ? : form of the C language if
statement has also been implemented to allow selection of model equations that change
with differing device voltage, current and charge conditions. Before introducing the EDD
symbol and it’s properties consider the following circuit simulation modelling problem: a
model for a device is required where the output voltage is a function of two input voltages
V IN1 and V IN2, such that

Vout (V IN1, V IN2) = V IN1 ·V IN2, (11)

where V IN1 and V IN2 can be arbitrary varying voltages.

This type of model is difficult to simulate at functional level26 using the pre-version 0.0.12
built-in devices. A linear voltage controlled voltage source can be used to multiply a voltage
by a constant. Multiplying by a second voltage is not possible with the linear controlled
sources. Qucs AM modulated and PM modulated sources are the nearest that Qucs has
to the source defined above. These sources however, only allow sinusoidal carrier signals.
Illustrated in Fig. 16 is a four quadrant multiplier EDD which allows multiplication of
two varying signals27. The EDD device generates current I1 = V 2 ·V 3. This in turn is
transformed to the output voltage by a unity gain current controlled voltage source SRC1.
An EDD device can consist of up to 8 branches. The branches have currents, I1 to I8,
voltages V1 to V8 and internal charges Q1 to Q8 respectively. Overall the total device
current depends how these branches are connected. A similar comment applies to the total
device charge. In Fig. 16 currents I2 and I3 are set to zero, charges Q2 and Q3 are also zero,
and voltages V 2 = V IN1 and V 3 = V IN2. Hence current I1 becomes the multiplication of
V IN1 and V IN2. The fact that currents I2 and I3 are set to zero implies that the terminals
connected to the external input voltages have high impedance and act as voltage probes.
The test circuit in Fig. 16 is shown with signal inputs generated by sinusoidal oscillators;
V1 acts as a modulating signal and V2 as a carrier signal. The bottom right hand corner
of Fig. 16 includes a second graph which illustrates the effect of changing signal V2 to a
square wave source with 0.05ms period.

24See Qucs Technical Papers, Section 10.7: Equation defined models, Stefan Jahn, Michael Margraf,
Vincent Habchi and Raimund Jacob, http://qucs.sourceforge.net/technical.html.

25The Y parameters of the device being modelled must also exist for the explicit form of the EDD to be
valid.

26It is, of course, possible to model the multiplier operation at discrete component level e.g. using a
Gilbert cell mixer circuit.

27This model is based on an idea suggested by Stefan Jahn, during the EDD development phase.

24

http://qucs.sourceforge.net/technical.html

V1
U=1 V
f=1 kHz

V2
U=5 V
f=10 kHz VMULT1

SRC1
G=1

Out1
Num=1

In1
Num=2

In2
Num=3

1

2

3

D1
I1=V2*V3
Q1=0
I2=0
Q2=0
I3=0
Q3=0

transient
simulation

TR1
Type=lin
Start=0
Stop=1 ms
Points=401

R1
R=50 Ohm

Out

0 2e-4 4e-4 6e-4 8e-4 1e-3

-5

0

5

time

O
ut

.V
t

0 2e-4 4e-4 6e-4 8e-4 1e-3

-1

0

1

time

vm
ul

_2
_t

b:
O

ut
.V

t

Figure 16: Qucs EDD four quadrent multiplier model and test circuit

The Qucs EDD component

A two terminal model for a universal non-linear component with resistive, capacitive and
inductive parallel branches is shown in Fig. 17. All three branches have elements that can
be functions of either voltage or current or charge28. The Qucs EDD component can be
used to model this nonlinear device. One EDD element is needed to model the resistive and
capacitive branches. A second EDD device, plus a gyrator, models the inductive branch.
The total terminal current is the sum of the individual branch currents. Equations for the
three branch currents are given by the following equations:

I = I1 + IC + IL, (12)

28Each branch can be a function of one or more of these circuit variables but not necessarily all three at
the same time.

25

where

I1 = f(V), IC = C(V, I) · dV 1

dt
=

dQ1

dt
(13)

Also

V 1 = i2, V 2 = −IL, i2 = −L(I) · dV 2

dt
, V 1 = L(I) · dIL

dt
(14)

Giving

IL =
1

L(I)
·
∫

V 2 · dt (15)

and

V L = V 2 = V 1 =
dΦ

dt
(16)

Hence

I = f(V) + C(V, I) · dV 1

dt
+

1

L(I)
·
∫

V 1 · dt (17)

The EDD is characterised by eight parallel branches each comprising a current component
In and a charge component Qn, where n ranges from 1 to 8. The currents may be constants
or defined by equations that are functions of the EDD branch voltages (these are designated
V 1 to V 8). This form of the EDD component is known as the explicit EDD model.
Please note, EDD currents cannot be functions of current. However, with release 0.0.12
implementation of the explicit EDD the device charge can be a function of either voltage
or current29. The current in the resistive branch being a function of EDD voltage allows a
range of two terminal30 devices to be modelled, allowing, for example, nonlinear resistors
and diode models to be easily developed. Similarly, the fact that the EDD charge can be
a function of voltage or current extends the range of allowed Qucs capacitor types opening
new areas of application. The same comments apply to the nonlinear inductors where
components that have inductance values which are functions of current allow modelling
of nonlinear transformer and coupled inductor effects. This was not possible with earlier
Qucs releases. The EDD current and charge values may be defined by symbolic equations
that include the operators and functions listed in the “Short description of mathematical
functions“ entry in the Qucs help index31.

29This allows modelling of semiconductor capacitive effects where the amount of stored charge is either
a function of voltage (depletion layer capacitance), or a function of current (diffusion capacitance).

30The number of device terminals can be increased to model transistors and other devices.
31The Qucs operators and functions are a superset of those defined in the Verilog-A language manual.

However, in some cases the name of the operator or function differs slightly. For example Verilog-A uses
pow(x, y) for the power function whilst Qucs uses ∧ to denote xy. An example of differing function names
are the inverse trigonometric functions. A list of the available functions is given in Appendix A.

26

X1
R=1

1

D1
I1=I1
Q1=C(V,I)*V1 1

D2
I1=0
Q1=L(I)*V2

C1
C=f(V,I)

L1
L=f(I)

R1
R=f(V)

I1+IC IL

V2

I

V1

i2

I

V1

I1 IC IL

Q

Gyrator

Equation
defined
device
(EDD)

Equation
defined
device
(EDD)

Figure 17: A non-linear two terminal branch with parallel resistive, capacitive and inductive
components

27

Modelling nonlinear resistors

In many measurement applications a transducer is employed to transform changing values
of a physical quantity to, say, changes in resistance. Often the resistive characterstics of
these devices are nonlinear. To demonstrate how the EDD can be used to model a nonlinear
resistance the example shown in Fig. 18 is introduced. In this schematic an EDD represents
a resistance that is a function of the applied voltage across it’s terminals. This example
deliberately shows an extreme case where the resistance changes in a resistive pulse like
fashion as the terminal voltage increases. The example also introduces for the first time the
ternary ? : operator and illustrates how it can be nested to give an ”if then else“ structure
to define the component properties. A point of note with these very nonlinear devices
centres around the fact that it is possible to define components that have discontinuities
in their I-V characteristics32. The EDD current equation defines how the resistance of this
device changes with changing terminal voltage. This equation is given by

I1=V1/((V1<1.0) ? 1000 : (V1<2.0)

? 1000+4000*(V1-1) : (V1<5.0)

? 5000 : ((V1 >=5.0) && (V1<6.0))

? 5000-4500*(V1-5.0) : 500)

Which in terms of an ”if then else“ type statement is equivalent to:

I1 = V1/(if (V1 < 1.0) then 1000

else if (V1 < 2.0) then 1000 + 4000*(V1-1)

else if (V1 < 5.0) then 5000

else if ((V1 >= 5.0) && (V1 < 6.0)) then 5000 - 4500*(V1-5.0)

else 500)

32One effect of such a discontinuity is the introduction of rapidly changing circuit conditions which can
cause the simulator difficulties in converging to a correct solution. Sometimes, if this happens, simulation
run times may be dramatically increased or simulation fails altogether.

28

V
1

U
=V

s

dc
 s

im
ul

at
io

n

D
C

1

P
r1

E
qu

at
io

n

E
qn

1
R

=V
s/

P
r1

.I

P
ar

am
et

er
sw

ee
p

S
W

1
S

im
=D

C
1

T
yp

e=
lin

P
ar

am
=V

s
S

ta
rt=

0
S

to
p=

7
P

oi
nt

s=
10

0

1

D
1

I1
=V

1/
((

V
1<

1.
0)

 ?
 1

00
0

: (
V

1<
2.

0)
 ?

 1
00

0+
40

00
*(

V
1-

1)
 :

(V
1<

5.
0)

 ?
 5

00
0

: (
(V

1
>=

5.
0)

 &
&

 (
V

1<
6.

0)
) ?

 5
00

0-
45

00
*(

V
1-

5.
0)

 :
50

0)

V
s

0
1

2
3

4
5

6
7

1e
-6

1e
-5

1e
-4

1e
-3

0.
010.

1

V
s

Pr1.I

0
1

2
3

4
5

6
7

0

1e
3

2e
3

3e
3

4e
3

5e
3

V
s

R

Figure 18: Qucs nonlinear resistor model

29

Modelling nonlinear capacitors and inductors

Nonlinear capacitors, who’s C value is a function of terminal voltage, and nonlinear induc-
tors, who’s L value is a function of terminal current, commonly act as control elements in
electronic systems. SPICE 2g6 includes a nonlinear symbolic polynomial form of C and L33.
The schematic shown in Fig. 19 illustrates how a nonlinear capacitor can be modelled by an
EDD. This model is based on a SPICE like polynomial function with four coefficients; C0,
C1, C2 and C334. The test circuit is a simple RC network with nominally identical R and
C component values to those shown in Fig. 2. Increasing the value of DC source V1 also
increases C which in turn decreases the RC low pass filter -3dB frequency. This effect is
very visible in Fig. 19. The nonlinear changes in C are also clearly illustrated in the output
voltage and phase curves. The schematic symbol for the nonlinear capacitor is shown in
Fig. 19 with a red ring drawn around the normal capacitor symbol. This denotes an EDD
based component. An alternative convention is to use red lettering within a symbol. The
test circuit and simulation results for a nonlinear inductance are shown in Fig. 20. The
EDD model is similar to the SPICE 2g6 nonlinear inductance model with four coefficients.
This number can be increased, if required, by extending the EDD polynomial expression.
A gyrator is employed with the EDD to model the nonlinear inductance. The effect of
nonlinear inductance on the inductance current is shown by the difference between probe
currents Pr1 and Pr2.

33The details of these polynomial functions are presented in Test Reports 4 and 5 of the SPICE to Qucs
testing Series, Mike Brinson, http://qucs.sourceforge.net/docs.html.

34SPICE 2g6 allows up to twenty coefficients. Simply add more higher order terms to the Qucs polyno-
mial if required.

30

http://qucs.sourceforge.net/docs.html

V2
U=1 V

V1
U=Vb R1

R=1k

dc simulation

DC1

ac simulation

AC1
Type=log
Start=1 Hz
Stop=10kHz
Points=201

Equation

Eqn1
Ph_Vout=phase(Vout.v)
Vout_dB=dB(Vout.v)

Parameter
sweep

SW1
Sim=AC1
Type=lin
Param=Vb
Start=1
Stop=10
Points=10

V

SUB1
C0=1u
C1=0.5u
C2=0.2u
C3=0.1u

PIN1

POUT1
1

D1
I1=0
Q1=C0*V1+(C1/2)*V1^2+(C2/3)*V1^3+(C3/4)*V1^4

Vout

1 10 100 1e3 1e4

0

0.5

1

acfrequency

V
ou

t.v

1 10 100 1e3 1e4

-80

-60

-40

-20

0

acfrequency

V
ou

t_
dB

1 10 100 1e3 1e4

100

150

200

acfrequency

P
h_

V
ou

t

Vb
1
2
3
4
5
6
7
8
9
10

Vout.V
1
2
3
4
5
6
7
8
9
10

Figure 19: Qucs nonlinear capacitor model

31

V1
U=vin
f=1 MHz

Pr1

Pr2 L1
L=1e-6

transient
simulation

TR1
Type=lin
Start=0
Stop=4 us

Parameter
sweep

SW1
Sim=TR1
Type=lin
Param=vin
Start=0
Stop=100
Points=3

dc simulation

DC1

X1
R=1

P_inp1

P_inn1

1

D1
I1=0
Q1=L*V1+(L2/2)*V1^2+(L3/3)*V1^3+(L4/4)*V1^4

IND=L+L2*I(L)+L3*I(L)^2+L4*I(L)^3

SUB1
L=1e-6
L2=5e-7
L3=1e-7
L4=5e-8

in

0 5e-7 1e-6 1.5e-6 2e-6 2.5e-6 3e-6 3.5e-6 4e-6

-100

0

100

time

in
.V

t

0 5e-7 1e-6 1.5e-6 2e-6 2.5e-6 3e-6 3.5e-6 4e-6

0

2

4

6

time

P
r1

.It

0 5e-7 1e-6 1.5e-6 2e-6 2.5e-6 3e-6 3.5e-6 4e-6

0

20

40

time

P
r2

.It

Figure 20: Qucs nonlinear inductor model

32

Compact device modelling using EDD

Semiconductor device models are a corner stone of all circuit simulators. Often they are
characterised by the same parameters as those found in the SPICE 2g6 and 3f5 diode, BJT,
FET and MOS models.35. Since the original SPICE semiconductor device models where
first developed many new extensions to these models have been proposed. Unfortunately,
adding such models to a circuit simulator is a complex process, being both time consuming
and requiring specialised knowledge. For the average Qucs user the hand coded C++ model
generation route is one that they would not contemplate attempting because of the depth
of knowledge and specialised skills required. The Qucs EDD was devised to promote fast,
and straight forward, prototyping of semiconductor compact models, allowing a wider Qucs
population the opportunity to try their hand at device model construction. To demonstrate
the stages needed to generate an EDD model of a semiconductor device a compact model
of a diode is introduced in this section36.

The DC diode current Id is given by the following functions of diode voltage Vd
37.

Id = Is · (exp (Vd/(n ·V t)− 1) + Vd ·GMIN, ∀ (−5 ·n ·V t ≤ Vd) (18)

Id = −Is + Vd ·GMIN, ∀ (−BV < Vd) and (Vd < −5 ·n ·V t ≤ Vd) (19)

Id = −IBV, ∀ (Vd = −BV) (20)

Id = −Is · (exp (−(BV + Vd)/V t)− 1 + BV/V t) , ∀ (Vd < −BV). (21)

In these equations:

• Is = the saturation current.

• n = the emission coefficient.

• GMIN = a small conductance in parallel with the diode38

• V t = kB ·T/q, where T is the diode temperature in Kelvin, kB is Boltzmann’s
constant and q the charge on the electron.

35The SPICE 2g6 and 3f5 device parameters are a subset of those commonly provided with current
generation of circuit simulators, including Qucs.

36A second three terminal MESFET transistor example is available for downloading from the Qucs Web
site.

37These equations are for the SPICE 2g6 diode model, see Giuseppe Massobrio, Chapter 1, Pn-junction
diode and Schottky diode, Semiconductor device modeling with SPICE, Edited by Paolo Antognetti,
Giuseppe Massobrio, 1988, McGraw-Hill,Inc, ISBN 0-07-002107-4.

38GMIN is added to help Qucs DC convergence. The SPICE default value is 1e-12S.

33

• BV = reverse breakdown voltage (positive number)

• IBV = reverse breakdown current (positive number).

Figure 21 gives the EDD model for the experimental semiconductor diode. The ternary
operator ?: is used to select the correct equation for each diode operating region. The
diode current Id : content.tex, v1.22007/06/0316 : 58 : 59elaExp is the sum of EDD
branch currents I1 to I4, where I1 represents the diode forward bias region, I2 the reverse
bias region and I3 plus I4 the diode reverse bias breakdown region. When calculating
diode current a special form of the exponential function exp(), called limexp(), is employed
to assist Qucs to converge to a solution during DC and transient large signal analysis. The
function limexp() linearises the exponential function at large argument values minimising
the possibility of floating point overflow and generation of software exceptions. The Id−Vd

characteristic curves shown in Fig. 21 are for the forward bias region with series resistance
rs set to 0.01Ω. For completeness the simulation data for the Qucs built-in diode are also
given. Clearly the two sets of results are very similar. The DC simulation results for the
diode reverse breakdown region of operation are shown in Fig. 22. Again for comparison
an Id − Vd plot for the Qucs built-in diode is also provided. In this region of operation
some slight differences are apparent: although for both devices the reverse breakdown is
very close to 100V the slope of the Id − V d curve at negative voltages beyond -BV is
different, emphasising that the SPICE diode model does not model breakdown or zener
effects well39.

The next stage in the development of the diode model is to add capacitance effects: deple-
tion layer capacitance for the reverse bias region and diffusion capacitance for the forward
bias region. Diode capacitance is given by:

• Depletion layer capacitance

Cdep =
dQdep

dVd

= Area ·Cj0

(
1− Vd

Vj

)−m

(22)

• Diffusion capacitance

Cdiff =
dQdiff

dVd

= tt · dId

dVd

(23)

Where the total stored charge Qd = Qdep + Qdiff . Using the same notation as the SPICE
diode model:

Qdiff = tt · Id (24)

Qdep = Area ·Cj0

Vd∫
0

(
1− Vd

Vj

)−m

dV, ∀ (Vd <= FC ·Vj) (25)

39See Steven M. Sandler, SPICE subcircuit accurately models zener characteristics, Personal Engineer-
ing, November 1998, pp 45-48 for more information on this subject.

34

dc simulation

DC1

Pr1
Vs
U=Vd

Equation

Eqn1
Id=Pr1.I
Id_Q=Pr2.I
lnId=ln(Pr1.I)
lnId_Q=ln(Pr2.I)

SUB1
n=1.0
rs=0.01
Is=1e-14
BV=100.0
IBV=1e-3
Vj=1.0

Parameter
sweep

SW1
Sim=DC1
Type=lin
Param=Vd
Start=0
Stop=1
Points=190

Pr2

D1
Is=1e-14 A
N=1
Vj=1.0
Rs=0.01
Bv=100.00
Ibv=1e-3

PCATHODE1

1234

D2
I1=(V1>-5.0*n*Vt) ? Is*(limexp(V1/(n*Vt))-1.0)+V1*GMIN : 0
Q1=0
I2=(-BV<V1) ? (V1<-5.0*n*Vt) ? -Is+V1*GMIN : 0 : 0
Q2=0
I3=(V1==-BV) ? -IBV : 0
Q3=0
I4=(V1<-BV) ? -Is*(limexp(-(BV+V1)/Vt)-1.0+BV/Vt) : 0
Q4=0

Equation

Eqn2
GMIN=1e-12
Vt=vt(300)

RS1
R=rs

PANODE1

0 0.2 0.4 0.6 0.8 1
-40

-20

0

Vd (V)

ln
(Id

)

0 0.2 0.4 0.6 0.8 1

0

5

10

Vd (V)

Id
 (A

)

0 0.2 0.4 0.6 0.8 1

0

5

10

Vd (V)

ID
_Q

 (A
)

0 0.2 0.4 0.6 0.8 1
-40

-20

0

Vd (V)

ln
(ID

_Q
)

Figure 21: Compact diode model DC test circuit and simulation results: SUB1 is the EDD
diode model and D1 the Qucs diode model with the same parameters as SUB1.

35

-101 -100.5 -100 -99.5

-10

-5

0

Vd (V)

Id
 (A

)

-101 -100.5 -100 -99.5

-50

0

Vd (V)

ID
_Q

 (A
)

Figure 22: Compact diode model DC simulation results for the reverse breakdown region
of operation

Using integration formula
∫

(ax + b)ndx =
1

a

(ax + b)1+n

1 + n
and simplifying yields:

Qdep =
Area ·Cj0 ·Vj

1−m

[
1−

(
1− Vd

Vj

)1−m
]

(26)

Also, in the forward bias region

Qdep = Area ·Cj0 ·F1 +
Area ·Cj0

F2

Vd∫
FC ·Vj

(
F3 +

m ·Vd

Vj

)
dV, ∀ (Vd >= FC ·Vj) (27)

On integrating

Qdep = Area ·Cj0

[
F1 +

(
1

F2

)
·
{

F3 · (Vd − FC ·Vj) +

(
m

2 ·Vj

)
·
(
V 2

d + (FC ·Vj)
2
)}]
(28)

Where

F1 =
Vj

1−m

[
1− (1− FC)1−m}

, F2 = (1− FC)1+m , F3 = 1− FC · (1 + m) (29)

In these equations:

• FC = Coefficient for forward-bias depletion capacitance.

• m = Grading coefficient.

• tt = Transit time.

• Area = Device area.

• Cj0 = Zero-bias junction capacitance.

36

Figure 23 shows the extended diode model. The Cdep and Cdiff components of the device
capacitance have been included in the EDD model as stored charge Q1 and Q2. Again
the ternary operator ?: is employed to select the correct equation for each section of the
diode DC operating range. An equation block is used to simplify the charge equations
through the use of factors F1, F2 and F3.40. An area factor has also been added to the
EDD model in Fig. 23. This is introduced to allow simulation of two or more equivalent
parallel devices. The diode variables scaled by area are:

Is(A) = Is ·Area, Cj0(A) = Cj0 ·Area, and rs(A) = rs/Area. (30)

The test circuit shown in Fig. 23 illustrates how device capacitance and resistance can
be determined as a function of diode bias voltage. Firstly, the diode S parameters are
determined at a given bias voltage, secondly these are converted to Y parameters and
the diode capacitance (Cap) and resistance (RD) extracted from Y [1, 1], and finally the
variation of Cap and RD with diode voltage Vd plotted using the Qucs plotting function
PlotVs. Notice that the value of Cap at Vd = 0V agrees with the value of Cj0.

To complete the demonstration EDD diode model all that remains to do is to add temper-
ature dependence to the current and capacitance equations. Circuit simulators normally
use two temperatures to determine device temperature dependence; the first called Tnom
represents the temperature that the device parameters were measured, and the second
called Temp represents the current device temperature. A high percentage of the diode
parameters are temperature dependent. However, to simplify the demonstration diode
model only the temperature dependence of parameters Is, V j and Cj0 will be included
in the model. Adding extra temperature dependence to the diode model is left to readers
as an exercise41. One of the great advantages of the EDD style of modelling is that it is
interactive allowing easy experimentation with models to any given level. The following
equations list the temperature dependence of Is, V j and Cj0.

Let T1 = Tnom and T2 = Temp, then

Is(T2) = Is(T1)

{
T2

T1

}XTI
n

exp

[
−q ·Eg(300)

kB ·T2

(
1− T2

T1

)]
(31)

V j(T2) =
T2

T1
·V j(T1)− 2 · kB ·T2

q
ln

(
T2

T1

)1.5

−
[
T2

T1
·Eg(T1)− Eg(T2)

]
(32)

Cj0(T2) = Cj0(T1)

[
1 + m

{
400 · 10−6 (T2− T1)− V j(T2)− V j(T1)

V j(T1)

}]
(33)

In these equations:

40In complex current and charge expressions precalculating subexpressions in equation blocks ensures
that they are only calculated once at the beginning of a simulation, ensuring minimum run times for an
EDD model.

41For example, parameters m and BV are both temperature dependent.

37

Pr1

P1
Num=1
Z=50 Ohm

X1

Vs1
U=Vs

dc simulation

DC1

S parameter
simulation

SP1
Type=const
Values=[100 kHz]

Parameter
sweep

SW1
Sim=SP1
Type=lin
Param=Vs
Start=-4
Stop=0.8
Points=200

Equation

Eqn1
Y=stoy(S)
LN_RD=ln(RD)
RD=PlotVs(1/(real(Y[1,1])),Vs)
Cap=PlotVs(imag(Y[1,1])/Omega,Vs)
Omega=2*pi*frequency

SUB1
n=1.0
rs=0.01
Is=1e-14
BV=100.0
IBV=1e-3
Vj=1.0
Cj0=1e-12
FC=0.5
tt=1e-12
Area=1
m=0.5

RS1
R=rs

PANODE1

PCATHODE1Equation

Eqn2
GMIN=1e-12
F1=(Vj/(1-m))*(1-(1-FC)^(1-m))
F2=(1-FC)^(1+m)
F3=1-FC*(1+m)
Vt=vt(300)

1234

D1
I1=(V1>-5.0*n*Vt) ? Is*(limexp(V1/(n*Vt))-1.0)+V1*GMIN : 0
Q1=(V1 < FC*Vj) ? tt*I1+Area*(Cj0*Vj/(1-m))*(1-(1-V1/Vj)^(1-m)) : 0
I2=(-BV<V1) ? (V1<-5.0*n*Vt) ? -Is+V1*GMIN : 0 : 0
Q2=(V1 >= FC*Vj) ? tt*I1+Area*Cj0*(F1+(1/F2)*(F3*(V1-FC*Vj)+(m/(2*Vj))*(V1*V1-FC*FC*Vj*Vj))) : 0
I3=(V1==-BV) ? -IBV : 0
Q3=0
I4=(V1<-BV) ? -Is*(limexp(-(BV+V1)/Vt)-1.0+BV/Vt) : 0
Q4=0

Vd

-4 -3 -2 -1 0 1

0

5e-12

1e-11

Vd (V)

C
ap

 (F
)

-4 -3 -2 -1 0 1

0

5e11

1e12

Vd (V)

R
d

(

�)

-4 -3 -2 -1 0 1

0

20

VD (V)

LN
_R

D

Figure 23: Compact diode model capacitance and resistance simulation

38

• XTI = Saturation current temperature exponent.

• Eg(T) = EG(0)− 7.02e− 4 ·T 2

1108 + T
, the energy gap.

Figure 24 shows the extended EDD for the experimental diode model. Again the limexp()
function is used in preference to the standard exp() function in the temperature calculations
listed in equations block Eqn2. The test circuit in Fig. 24 sweeps the device temperature
from 20 to 80 degrees Centigrade. The graph inlay illustrates the experimental diode
current Id plotted as a function of temperature. The temperature of the built-in Qucs diode
is held constant, at room temperature, and it’s current Id Q plotted as an overlay. The
two curves cross at room temperature, indicating identical currents at this temperature.

39

Pr1

Pr2

Equation

Eqn1
Id=Pr1.I
Id_Q=Pr2.I
lnId=ln(Pr1.I)
lnId_Q=ln(Pr2.I)

Vs
U=0.6

D1
Is=1e-14 A
N=1
Cj0=1e-12
Vj=1.0
Rs=0.01
Bv=100.00
Ibv=1e-3
Temp=26.85
Xti=3.0
Eg=1.11
Tnom=26.85
Area=1

dc simulation

DC1

Parameter
sweep

SW2
Sim=DC1
Type=lin
Param=Temp_sw
Start=-20
Stop=80
Points=100

SUB1
n=1.0
rs=0.01
Is=1e-14
BV=100.0
IBV=1e-3
Vj=1.0
Cj0=1e-12
m=0.5
Area=1
FC=0.5
tt=1e-12
XTI=3.0
Tnom=26.85
Temp=Temp_sw
Eg=1.16

Equation

Eqn2
Cj0_T2=Cj0*(1+m*(400e-6*(T2-T1)-(Vj_T2-Vj)/Vj))
rs_AREA=rs/AREA
GMIN=1e-12
A=7.02e-4
B=1108
T1=Tnom+273.15
Vj_T2=(T2/T1)*Vj-(2*kB*T2/q)*ln((T2/T1)^1.5)-((T2/T1)*Eg_T1-Eg_T2)
Is_T2=Is*(T2/T1)^(XTI/n)*limexp((-(q*Eg)/(kB*T2))*(1-T2/T1))
Eg_T1=Eg-A*T1*T1/(B+T1)
Eg_T2=Eg-A*T2*T2/(B+T2)
T2=Temp+273.15

Equation

Eqn3
F1=(Vj/(1-m))*(1-(1-FC)^(1-m))
F2=(1-FC)^(1+m)
F3=1-FC*(1+m)
Vt=vt(300)

PCATHODE1

PANODE1

RS1
R=rs_AREA

1234

D2
I1=(V1>-5.0*n*Vt) ? Area*Is_T2*(limexp(V1/(n*Vt))-1.0)+V1*GMIN : 0
Q1=(V1 < FC*Vj) ? tt*I1+Area*(Cj0_T2*Vj_T2/(1-m))*(1-(1-V1/Vj_T2)^(1-m)) : 0
I2=(-BV<V1) ? (V1<-5.0*n*Vt) ? -Area*Is_T2+V1*GMIN : 0 : 0
Q2=(V1 >= FC*Vj) ? tt*I1+Area*Cj0_T2*(F1+(1/F2)*(F3*(V1-FC*Vj_T2)+(m/(2*Vj_T2))*(V1*V1-FC*FC*Vj_T2*Vj_T2))) : 0
I3=(V1==-BV) ? -IBV : 0
Q3=0
I4=(V1<-BV) ? -Area*Is_T2*(limexp(-(BV+V1)/Vt)-1.0+BV/Vt) : 0
Q4=0

-20 0 20 40 60 80
1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

0.01

0.1

Temp (Centigrade)

Id
Id

_Q

Figure 24: Compact diode model with temperature dependence

40

Constructing EDD compact device models and circuit

macromodels

Component equations, subcircuits with parameters and EDD models are major develop-
ments for the Qucs circuit simulator. They provide advanced modelling capabilities with
enough power and flexibility to allow a much greater range of models to be developed than
the ones currently provided with each Qucs release. In the future it is proposed to add new
models to the Qucs Web site. The Qucs team is very keen to encourage all Qucs users to
support the modelling effort. If you have constructed a new model and would like to share
it with other Qucs users please post your model on the qucs-devel or qucs-help mailing
lists. Both the model schematic file and a brief outline of its operation and specification
are requested. An example model specification for the Curtice MESFET device can be
found on the Qucs Web site. Please use the same format when writing model descriptions.

End Note

This tutorial note introduces a large number of new modelling concepts and shows how
equations, subcircuits with parameters and the new equation defined device perform a
central role in constructing Qucs models. The EDD approach to modelling makes pos-
sible, for the first time, the construction of equation defined compact device models and
circuit macromodels using the Qucs schematic capture facilities as an interactive modelling
medium. This is a major step forward for Qucs. Once again these notes are very much
a record of work in progress: much still remains to be done in the future to improve the
modelling capabilities provided by Qucs. A major short term task will be the development
of additional models covering as wide a range of applications as possible. If Qucs is to
fulfill it’s mission to become a truly universal circuit simulator then it must be supported
by models. Some readers will have noticed that these notes include very little information
about the ADMS-Verlog-A and hand coded C++ model development routes. This was a
deliberate decision on my part. Sometime in the future I intend to return to these subjects
and update the tutorial. A very special thank you must go to Stefan Jahn for all his hard
work, skill, and dedication during the period he has worked on programming the amazing
modelling capabilities now embedded in Qucs.

41

Appendix A: Qucs constants, operators and functions

This appendix lists the constants, operators and a number of functions that are avail-
able for constructing Qucs equations. Items in [...] indicate the equivalent object in
the Verilog-A language. The functions listed are common to Qucs and Verilog-A. A
number of other functions have been implemented in Qucs. The full list can be found
in the Qucs help system; ”Short Description of mathematical Functions” or in the Qucs
”Measurement Expression Reference Manual“ by Gunther Kraut and Stefan Jahn, http:
//qucs.sourceforge.net/docs.html.

• Constants

1. pi = 3.141593...

2. e = 2.718282...

3. kB = 1.380651e-23 J/K

4. -q = -1.602177e-19 C

• Operators

1. +x unary plus

2. -x unary minus

3. x+y addition

4. x-y subtraction

5. x*y multiplication

6. x/y division

7. x%y modulo (remainder)

8. x^y power [pow(x,y)]

9. ?: ternary (condition) ? (expression if true) : (expression if false)

10. || logical or

11. && logical and

12. == equal

13. < less than

14. <= less than or equal to

15. > greater than

16. >= greater than or equal to

17. != not equal to

18. () brackets

42

http://qucs.sourceforge.net/docs.html
http://qucs.sourceforge.net/docs.html

• Functions

1. ln(x) natural logarithm

2. log10(x) decimal logarithm [log(x)]

3. exp(x) exponential function base e

4. sqrt(x) square root

5. min(x,y) minimum

6. max(x,y) maximum

7. abs(x) absolute value

8. sin(x) sine

9. cos(x) cosine

10. tan(x) tangent

11. arcsin(x) inverse sine [asin(x)]

12. arccos(x) inverse cosine [acos(x)]

13. arctan(x[,y]) inverse tangent [atan2(x,y)]

14. sinh(x) hyperbolic sine

15. cosh(x) hyperbolic cosine

16. tanh(x) hyperbolic tangent

17. arsinh(x) inverse hyperbolic sine [asinh(x)]

18. arcosh(x) inverse hyperbolic cosine [acosh(x)]

19. artanh(x0 inverse hyperbolic tangent [atanh(x)]

20. limexp(x) argument limited exponential function

21. hypot(x,y) Euclidean distance function

43

Appendix B: Constructing subcircuits with parameters

In this appendix a series of screen dumps illustrate the sequence needed to construct a
subcircuit with parameters. A simple series resonance circuit has been chosen for the
demonstration.

Enter the series resonance circuit and add input and output pins

Figure 25: Stage 1: screen dump showing LCR circuit

44

Change the component names to Ls, Cs and Rs

Figure 26: Stage 2: screen dump showing LRC circuit

Figure 27: Stage 2: screen dump after name changes

45

Construct symbol for new subcircuit

Right click on the Qucs drawing area and select Edit Circuit symbol or press key F9. Edit
the drawing symbol to give the design shown in Fig. 28.

Figure 28: Stage 3: the subcircuit symbol

46

Add the names of the subcircuit parameters to the LCR symbol

Right click on the SUB / File=name caption and enter names of subcircuit parameters
with their default values.

Figure 29: Stage 4: entering subcircuit parameter names and default values

Figure 30: Stage 4: resulting subcircuit and parameter list with default values

47

Test the LCR subcircuit

Figure 31 gives a simple AC transfer function test circuit and resulting waveforms. Param-
eter R SW is swept over the range 1Ω to 10Ω and the AC transfer function recorded and
plotted.

V1
U=1 V

dc simulation

DC1

I O
LCR

SUB1
Rs=R_SW
Cs=1u
Ls=1m

Parameter
sweep

SW1
Sim=AC1
Type=lin
Param=R_SW
Start=1
Stop=10
Points=10

ac simulation

AC1
Type=log
Start=100 Hz
Stop=100kHz
Points=100Equation

Eqn1
gain=dB(Vout.v)
phase=phase(Vout.v)

Vin Vout

100 1e3 1e4 1e5

-100

0

100

acfrequency

ph
as

e

100 1e3 1e4 1e5

0

0.5

1

acfrequency

V
ou

t.v

100 1e3 1e4 1e5

-50

0

acfrequency

ga
in

Figure 31: Stage 5: Subcircuit test circuit and output waveforms

48

